
BioMed CentralGenetic Vaccines and Therapy

ss
Open AcceReview
DNA vaccines: improving expression of antigens
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Abstract
DNA vaccination is a relatively recent development in vaccine methodology. It is now possible to
undertake a rational step-by-step approach to DNA vaccine design. Strategies may include the
incorporation of immunostimulatory sequences in the backbone of the plasmid, co-expression of
stimulatory molecules, utilisation of localisation/secretory signals, and utilisation of the appropriate
delivery system, for example. However, another important consideration is the utilisation of
methods designed to optimise transgene expression. In this review we discuss the importance of
regulatory elements, kozak sequences and codon optimisation in transgene expression.

Review
In 1990, the direct gene transfer of plasmid DNA into
mouse muscle in vivo without the need for a special deliv-
ery system was demonstrated [1]. Furthermore, intramus-
cular inoculation with plasmid DNA encoding reporter
genes induced protein expression within the muscle cells.
This study provided evidence for the idea that naked DNA
could be delivered in vivo to direct protein expression.
Subsequently, a further study reported the gene expres-
sion a year or more after intramuscular injection of plas-
mid DNA [2]. Since these initial studies, many more
experiments have been carried out to evaluate different
factors that determine the efficiency of gene transfer and
immunogenicity of plasmid DNA. Furthermore, plasmid
DNA has been used to immunise against a variety of dis-
eases (known as DNA vaccination). Alternatively, plasmid
DNA has been used to treat genetic diseases and similar
factors may affect the efficacy of this gene therapy.

DNA vaccines usually consist of plasmid vectors (derived
from bacteria) that contain heterologous genes (trans-
genes) inserted under the control of a eukaryotic pro-

moter, allowing protein expression in mammalian cells
[3]. An important consideration when optimising the effi-
cacy of DNA vaccines is the appropriate choice of plasmid
vector. The basic requirements for the backbone of a plas-
mid DNA vector are a eukaryotic promoter, a cloning site,
a polyadenylation sequence, a selectable marker and a
bacterial origin of replication [4]. A strong promoter may
be required for optimal expression in mammalian cells.
For this, some promoters derived from viruses such as
cytomegalovirus (CMV) or simian virus 40 (SV40) have
been used. A cloning site downstream of the promoter
should be provided for insertion of heterologous genes,
and inclusion of a polyadenylation (polyA) sequence
such as the bovine growth hormone (BGH) or SV40 poly-
adenylation sequence provides stabilisation of mRNA
transcripts. The most commonly used selectable markers
are bacterial antibiotic resistance genes, such as the ampi-
cillin resistance gene. However, since the ampicillin resist-
ance gene is precluded for use in humans, a kanamycin
resistance gene is often used. Finally, the Escherichia coli
ColE1 origin of replication, which is found in plasmids
such as those in the pUC series, is most often used in DNA
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vaccines because it provides high plasmid copy numbers
in bacteria enabling high yields of plasmid DNA on puri-
fication. This review describes the utilisation of methods
designed to optimise transgene expression.

Regulatory elements
Various reports have described the strength of promoter/
enhancers or other transcriptional elements in DNA vac-
cines (see Table 1) [5–20]. In general, virally-derived pro-
moters have provided greater gene expression in vivo than
other eukaryotic promoters. In particular, the CMV imme-
diate early enhancer-promoter (known as the CMV pro-
moter) has often been shown to direct the highest level of
transgene expression in eukaryotic tissues when com-
pared with other promoters. For example, in one study a
plasmid expressing human immunodeficiency virus type
1 (HIV-1) Gag/Env under the regulation of the CMV pro-
moter/enhancer was compared to a comparable plasmid
utilising the endogenous AKV murine leukemia long ter-
minal repeat [17]. Analysis of the immune responses in
macaques injected with the plasmids showed that the
CMV-containing plasmid elicited higher Gag- and Env-
specific humoral and T-cell proliferative responses, reflect-
ing the greater transcriptional activity of the CMV pro-
moter. Furthermore, it has been demonstrated that
inclusion of the CMV intron A improved the level of
expression of transgenes expressed by the CMV promoter
or other promoter/enhancers [21]. It is thought that the
beneficial effect of introns on expression is primarily due
to an enhanced rate of polyadenylation and/or nuclear
transport associated with RNA splicing [22]. However,
some widely used virally-derived promoters, such as the
CMV promoter, may not be suitable for some gene ther-
apy applications since treatment with interferon-γ or
tumour necrosis factor-α may inhibit transgene expres-
sion from DNA vaccines containing these promoters
[23,24]. Thus, alternatives to the CMV promoter have
been sought. For example, the desmin promoter/
enhancer, which controls expression of the muscle-spe-
cific cytoskeletal protein desmin, was used effectively to
drive expression of the hepatitis B surface antigen priming
both humoral and cellular immunity against the antigen
[11]. These responses were shown to be of a comparable
magnitude to those in mice immunised with comparable
DNA vaccines containing the CMV promoter. Other tis-
sue-specific promoters that have been studied include the
creatine kinase promoter, also specific to muscle cells
[5,25], and the metallothionein and 1,24-vita-
minD(3)(OH)(2) dehydroxylase promoters, both of
which are specific to keratinocytes [26].

Since the rate of transcriptional initiation is generally
increased by the use of strong promoter/enhancers, the
rate of transcriptional termination may become rate-lim-
iting [27]. In addition, the efficiency of primary RNA tran-

script processing and polyadenylation is known to vary
between the polyadenylation sequences of different
genes. Thus, the polyadenylation sequence used within a
DNA vaccine may also have significant effects on trans-
gene expression. For example, it was demonstrated that
the commonly used SV40 polyadenylation sequence was
less efficient than the minimal rabbit β-globin and bovine
growth hormone polyadenylation sequences in mouse
liver, although addition of a second SV40 enhancer down-
stream of the SV40 polyadenylation signal did increase
expression to a level comparable to the other signals [10].
Therefore, it is possible that the strategy of inserting a sec-
ond SV40 enhancer downstream of a SV40 polyadenyla-
tion sequence may be utilised in the construction of more
efficient vectors.

Kozak sequences
Sequences flanking the AUG initiator codon within
mRNA influence its recognition by eukaryotic ribosomes.
As a result of studying the conditions required for optimal
translational efficiency of expressed mammalian genes,
the 'Kozak' consensus sequence has been shown to be
important [28,29]. It has been proposed that this defined
translational inititiating sequence (-6 GCCA/GCCAUGG
+4) should be included in vertebrate mRNAs located
around the initiator codon [28]. It has also been suggested
that efficient translation is obtained when the -3 position
contains a purine base or, in the absence of a purine base,
a guanine is positioned at +4 [29]. Prokaryotic genes and
some eukaryotic genes do not possess Kozak sequences.
Therefore, the expression level of these genes might be
increased by the insertion of a Kozak sequence.

Codon usage
Codon bias is observed in all species, and the use of selec-
tive codons in genes often correlates with gene expression
efficiency [30]. In general, taxonomically-close organ-
isms, such as E. coli and Salmonella enterica serovar Typh-
imurium, for example, use similar codons for their
protein synthesis whereas taxonomically-distant organ-
isms, such as E. coli and Saccharomyces cerevisiae, utilise
very different codons [31]. Mammalian codon usage is
also different from that of microorganisms [32]. Nagata et
al. [33] studied the effect of codon optimisation for mam-
malian cells of cytotoxic T-lymphocyte (CTL) epitopes
derived from the intracellular bacterium, Listeria monocy-
togenes, and the parasite Plasmodium yoelii, and reported
that the codon optimisation level of the genes correlated
well with translational efficiency in mammalian cells.

The greatest deviation from random codon usage in an
organism occurs in the most highly expressed genes as a
result of selection for codons that maximise translational
efficiency [34]. Minor tRNA species are avoided in highly
expressed genes. Thus, differences between codon usage
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in a heterologous gene and the host organism may affect
expression. To improve expression of human immunode-
ficiency virus type 1 gp120 from a DNA vaccine vector,
André et al. generated a synthetic gp120 sequence in
which most of the wild-type codons were replaced with
codons from highly expressed human genes. The resulting
construct showed increased in vitro expression of gp120
compared to the wild-type sequence. In addition, signifi-
cantly increased antibody titres and CTL reactivity were
observed following administration of the vector contain-
ing the synthetic sequence. Similarly, a DNA vaccine vec-
tor encoding a synthetic epitope of listeriolysin O with
mammalian codon usage showed higher translation effi-
ciency than a vector containing the wild-type sequence in
murine cells [36]. Furthermore, the first DNA vaccine was
capable of inducing specific CD8+ T cells able to confer
partial protection against challenge with L. monocytogenes
where the second DNA vaccine could not. A number of
other studies have reported that increased immune
responses may be obtained by DNA vaccination with a
transgene sequence with optimised codon usage. [36–40].

Conclusions
In this review the methodologies by which antigen expres-
sion has been optimised to date, i.e. optimisation of vec-
tor and transgene sequences, have been discussed. It is
clear that transgene expression may be increased through
the use of optimised promoters and polyA sequences.
However, in some circumstances it may be necessary to
optimise DNA vaccines to produce reduced transgene
expression. For example, the weaker SV40 promoter has
been used rather than the CMV promoter to drive expres-
sion of antigens that induce cell death upon overexpres-
sion [13]. Tissue-specificity is also considered important.
Such tissue-specific expression systems may be able to
produce stable expression by reducing the probability of
inducing an immune response to the transgene. It may be
possible to design vectors for gene therapeutic purposes
that avoid inducing unwanted immune responses against
the encoded antigen by using tissue-specific promoters
[41]. Restricting the site of expression of genes should
minimise the risks related to aberrant expression of a gene
product. Furthermore, it should be possible to develop

Table 1: Comparison of promoters used in DNA expression studies in vitro and in vivo

Expressed antigen Promoters/enhancers compared In vitro/in vivo comparison Reference

GFP CMV, muscle-specific creatine kinase (CKM) 
promoter

Consistently higher levels of GFP expression were driven by the 
CKM promoter compared to CMV in mice.

[5]

LacZ CMV, glial fibrillary acidic protein (GFAP) promoter, 
neuron-specific enolase (NSE) promoter

Injection of mice with the constructs containing the different 
promoters showed that GFAP is as efficient at driving lacZ 
expression as CMV.

[6]

CAT HIV-1-LTR (long terminal repeat), RSV-TAR 
(transactivation response element)

HIV-1-LTR could be transactivated by tat in both stimulated and 
unstimulated cells; RSV-TAR was only transactivated in 
unstimulated cells.

[7]

CAT CMV, RSV, SV40, murine leukemia virus (SL3-3) 
promoter

The CMV promoter was found to be stronger than any of the 
other promoters tested in muscle.

[8]

CAT CMV, SV2 The CMV promoter was found to have greatest transcriptional 
activity.

[9]

Luciferase CMV, RSV, SV40, PGK, hybrid β-actin promoter/
CMV enhancer, CMV/IA (intron A)

The hybrid β-actin/CMV promoter/enhancer showed greater 
luciferase expression than RSV, SV40, PGK or CMV. CMV/IA also 
showed 2–6 fold in vitro and 1.5–3 fold in vivo higher luciferase 
expression than CMV.

[10]

Hepatitis B surface antigen 
(HBsAg)

CMV, desmin The promoters performed equally well in vitro, and CTL and Th1 
serum antibody responses against HbsAg in mice were of similar 
magnitude.

[11]

Hepatitis B envelope proteins CMV, desmin Greater in vitro expression of antigen was attributed to the desmin 
promoter. However, comparable humoral and cytotoxic immune 
responses were stimulated following i.m. injection of mice.

[12]

Rabies virus G protein CMV, SV40 Comparable G antigen-specific antibody titres were stimulated in 
mice. Slightly higher T cell responses were observed from the CMV 
construct.

[13]

Influenza virus H5 hemagglutinin 
(HA)

CMV, β-actin Constructs containing the CMV or β-actin promoters provided 
comparable protection against influenza in chickens.

[14]

Influenza virus H5 hemagglutinin 
(HA)

CMV, β-actin, RSV, SV40 Similar in vitro expression of HA. The greatest HA-specific antibody 
and protection against influenza in chickens was provided with the 
CMV construct.

[15]

Bovine herpesvirus glycoprotein 
D (gD)

RSV, CMV/IA CMV/IA construct produced higher neutralising antibody titres 
against gD in i.d. injected cattle.

[16]

HIV-1 gag/env CMV, AKV murine leukemia viral long terminal 
repeat

CMV showed 10–20 fold greater activity than AKV in vitro. 
Immunised macaques developed high humoral responses with the 
CMVconstruct only.

[17]

SV40 large tumour antigen CMV, SV40 The CMV construct induced higher levels of antibody and 
protection in the murine experimental metastasis model than the 
SV40 construct.

[18]

M. tuberculosis apa + pro 
proteins

CMV, UbC The CMV promoter was the most efficient tested. [19]

Adenovirus E4 ORF3 CMV, RSV, SV40, UbC, EF-1α Following i.n. dosing to mice, constructs containing the UbC and 
EF-1α promoters stimulated the most stable expression of antigen

[20]
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expression systems where gene products are only
expressed in the critical cell types for DNA vaccination or
gene therapy, for example, dendritic cells (DCs). As a bet-
ter understanding of the proteins whose expression is lim-
ited to DCs is obtained, novel expression systems will be
generated. Finally, through increased knowledge of the
regulation of expression of antigens, it is now possible to
produce multivalent systems whereby multiple antigens
may be expressed from a single DNA vaccine vector [42].

It is clear that the optimisation of antigen expression is an
important consideration in DNA vaccine vector design.
However, it is important to recognise that other aspects of
vector design may influence the efficacy of the vaccine/
gene therapy. A rational approach to improve the efficacy
of DNA vaccination or gene therapy would optimise the:
(i) vector backbone DNA sequence; (ii) transgene
sequence; (iii) co-expression of stimulatory sequences;
(iv) delivery system used for the vector; (v) targeting of the
vector for appropriate immune stimulation.

The backbone of a DNA vaccine vector could be further
modified to enhance immunogenicity via the manipula-
tion of the DNA to include certain sequences, so that the
DNA itself will have an adjuvantising effect. DNA vaccine
vectors contain many CpG motifs (consisting of unmeth-
ylated CpG dinucleotides flanked by two 5' purines and
two 3' pyrimidines) that, overall, induce a Th1-like pat-
tern of cytokine production [43], and are thought to
account for strong CTL responses frequently seen follow-
ing DNA vaccination [44]. It is possible to augment
responses to DNA vaccine vectors by incorporating CpG
motifs into the DNA backbone of the plasmid [45]. Alter-
natively, immune responses may be modulated or
enhanced by the co-expression of stimulatory molecules
or cytokines [46,4] or through the use of localisation or
secretory signals [47–49], or ligand fusions [50–54] to
direct antigens to sites appropriate for immune modula-
tion. Finally, a variety of routes of administration of DNA
vaccines have been studied, including intramuscular,
intradermal, subcutaneous, intravenous, intraperitoneal,
oral, vaginal, intranasal and, more recently, non-invasive
delivery to the skin (reviewed by Gurunathan et al. [4]).

The approaches outlined above will together allow for the
rational and optimised design for DNA vaccines and gene
therapy vectors. The ability to improve antigen expression
through the use of optimisation of regulatory elements,
kozak sequences and codon usage is highlighted in this
review, as part of this rational approach.
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