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Abstract

Background: Although lentiviral vectors have been widely used for in vitro and in vivo gene therapy
researches, there have been few studies systematically examining various conditions that may affect the
determination of the number of viable vector particles in a vector preparation and the use of Multiplicity
of Infection (MOI) as a parameter for the prediction of gene transfer events.

Methods: Lentiviral vectors encoding a marker gene were packaged and supernatants concentrated. The
number of viable vector particles was determined by in vitro transduction and fluorescent microscopy and
FACs analyses. Various factors that may affect the transduction process, such as vector inoculum volume,
target cell number and type, vector decay, variable vector — target cell contact and adsorption periods
were studied. MOI between 0—-32 was assessed on commonly used cell lines as well as a new cell line.

Results: We demonstrated that the resulting values of lentiviral vector titre varied with changes of
conditions in the transduction process, including inoculum volume of the vector, the type and number of
target cells, vector stability and the length of period of the vector adsorption to target cells. Vector
inoculum and the number of target cells determine the frequencies of gene transfer event, although not
proportionally. Vector exposure time to target cells also influenced transduction results. Varying these
parameters resulted in a greater than 50-fold differences in the vector titre from the same vector stock.
Commonly used cell lines in vector titration were less sensitive to lentiviral vector-mediated gene transfer
than a new cell line, FRL 19. Within 0-32 of MO used transducing four different cell lines, the higher the
MOl applied, the higher the efficiency of gene transfer obtained.

Conclusion: Several variables in the transduction process affected in in vitro vector titration and resulted
in vastly different values from the same vector stock, thus complicating the use of MOI for predicting gene
transfer events. Commonly used target cell lines underestimated vector titre. However, within a certain
range of MO, it is possible that, if strictly controlled conditions are observed in the vector titration
process, including the use of a sensitive cell line, such as FRL 19 for vector titration, lentivector-mediated
gene transfer events could be predicted.
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Background

Multiplicity of infection (MOI) is a parameter that has
been commonly used to predict viral infectivity in a pop-
ulation of target cells. With wild type viruses, an "infec-
tious unit" refers to the smallest amount of virus capable
of producing an infection in a susceptible cell. The titre of
the original suspension is defined as the number of infec-
tious units per unit volume of the preparation [1]. In the
field of gene therapy where viral vectors are used for gene
transfer, MOI was adopted to represent the ratio of input
infectious units (titrated on the target cell line) to the
number of cells available for transduction [2]. Ideally,
there should be a simple linear relationship between the
viral vector titre, its dilution, the volume of viral vector
suspension used, and the proportion of cells infected, tak-
ing into account the probabilistic nature of the infective
process when the number of viral vector particle approxi-
mates the number of cells. However, at present, the
number of viable vector particles (or vector titre) in a
given vector stock is determined by a vector-mediated
transduction process, which is of a non-linear nature and
can be influenced by various factors. If MOI is based on
vector titre that is "variable", then MOI is complicated by
all of the factors that influence vector titration and deter-
mination. Unfortunately, the extent of which is poorly
understood.

Recently, lentivirus-based gene transfer vectors have been
developed and have shown considerable promise for gene
therapy research. It is evident that this vector system has
several distinct advantages, and rapidly emerges as the
vector of choice for in vitro and in vivo gene therapy studies
[3,4]. Most current lentiviral vectors in use are based on
Human Immunodeficiency Virus (HIV) type 1. A tran-
sient, three or four-component, HIV-1 based vector sys-
tem consisting of one or two packaging constructs, a
transfer vector and a Vesicular Stomatitis Virus G glyco-
protein (VSV-G) envelope has recently been described and
widely used [5-10]. Several reports have demonstrated
that the HIV-based vectors effectively transduced dividing
and non-dividing cells in vitro and in vivo including
hematopoietic stem cells [7,11], terminally differentiated
cells such as neurons [9], retinal photoreceptors [8], mus-
cle, liver cells [5] and dendritic cells [12].

Other lentivectors, such as those based on the feline
immunodeficiency virus (FIV) [13], equine infectious
anaemia virus (EIAV) [14], caprine arthritis/encephalitis
virus (CAEV) [15], Jembrana disease virus (JDV) [7],
bovine immunodeficiency virus [16] and visna virus [17],
are examples of recently developed non-primate lentiviral
vectors that have also demonstrated efficient gene transfer
to various types of cells.

http://www.gvt-journal.com/content/2/1/6

Just as with Moloney murine leukaemia virus (MoMLV)
based retroviral vectors, many variables could theoreti-
cally affect the measurement of infectivity of lentiviral vec-
tor particles, such as target cell type, number, cycle, other
modulators of cell membrane ingredients, the time
needed for vector uptake and vector viability/susceptibil-
ity, half life during the transduction process or even
Brownian motion in which the vector makes way to the
target cell [18]. In addition, the issue of particle variation
within the population of artificially assembled vector
"infectious" units could be a contributory factor to
between-preparation variation in the predictability of
their infectious behaviour. Arai et al (1999) found that the
ratio of cells transduced with the VSV-G-pseudotyped ret-
roviral vectors based on MoMLYV correlated with the result
predicted from a Poisson distribution [9]. Generally with
retroviral vectors using an ecotrophic or amphotrophic
envelope, MOI at 1-3 is commonly used and results in
around 30% of cells being transduced. The efficiency of
gene transfer reaches a plateau after this. Higher MOI may
reduce the number of transduced cells [3,19]. However,
with lentiviral vector-mediated gene transfer, experiments
employing MOI even greater than 1000 have been
explored [12]. The rational behind the usage has obvi-
ously distinguished lentiviral vector from MoMLV based
retroviral vectors. Unfortunately, there are, at present, no
data available as to how lentiviral vectors behave in an in
vitro transduction process, and how the variables affect
vector titre determination and MOI usage.

In this study, we characterised factors that influenced the
in vitro vector titration process, including the number of
target cells being transduced, total number of viral vector
particles, inoculum volumes (well beyond the depth of
relevance to diffusion), vector decay and the period of vec-
tor adsorption (and thus vector decay). We also examined
the use of various MOIs on several commonly used cell
lines and tried to establish the relationship of MOI with
the efficiency of gene transfer.

Methods

Cell cultures

Cell lines used in this study were a fetal rat liver carcinoma
cell line, FRL 19; a human embryonic kidney cell line, 293
and its derivative, 293T; and a murine embryonic fibrob-
last cell line, NIH 3T3. FRL 19 was maintained at 37°C in
Ham and Dulbecco's modified Eagle's medium (1:1 ratio,
DMEM; Life Technologies Inc) containing 2 mM
glutamine, 4% Fetal Calf Serum (FCS), 100 U/mL penicil-
lin and 100 pg/mL streptomycin, 1 pg of fungizone per ml
(Ham and DMEM), 107 M of insulin, and 107 M of dex-
amethasone in a 5% CO, incubator. All other cells were
maintained at 37°C in DMEM containing 2 mM
glutamine, 10% Fetal Calf Serum (FCS), 100 U/mL peni-
cillin and 100 pg/mL streptomycin, similarly in a 5% CO,
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incubator. 293, 293T and NIH3T3 were maintained in
DMEM containing 10% FCS, 2 mM glutamine, 100 U/ml
penicillin and 100 pg/ml streptomcycin at 37°C similarly
in a 5% CO, incubator. Cells were seeded at 5 x 105 on 10
cm or 7.5 x 105 on 15 cm plate and were at 70 - 80% con-
fluence at the time of transfection or transduction.

Viral vector production

Replication-defective retroviral particles were generated
by transient co-transfection of 293T cells with the three
plasmids (pHR' CMVGFP or pHIV-CSGFP, pCMVARS.2
pr pCMVARS8.9 and pHCMV-G), using a CaPO, precipita-
tion method as we previously reported [21]. Briefly, 293T
cells were grown on 10 cm plates to 70-80% confluence
and co-transfected with 10 pg pHCMV-G, 10 pg pHR'
CMVGFP or pHIV-CSGFP and 20 pg pCMVAR8.2 or
PCMVARS8.9. The plasmid DNA was diluted into 250 mM
CaCl, in 1/10-TE buffer (1 mM Tris HCI, 0.1 mM EDTA,
pH 7.6) in 0.5 ml before an equal volume of 2x HBS (140
mM NaCl, 1.5 mM Na,HPO,, 50 mM HEPES, pH 7.05)
was added and mixed by gently bubbling air through the
mixture for 1 min. The solution was then added drop-wise
onto the cells (100 pl per 1 ml of culture media). The cell
cultures were rinsed with PBS and given fresh media
within 10-12 hr after initiating transfection. The medium
was harvested 48 hr post-transfection, centrifuged at low
speed to remove cell debris and filtered through a 0.45 pm
filter. The supernatant was stored at 4 °C no more than 24
hr before it was used for transduction.

Ultracentrifugation

This was performed as reported previously [20,21].
Briefly, 30 mL of vector-producing cell (VPC) supernatant
was added to each polypropylene ultra-centrifugation
tube (6 x 30 mL), and ultracentrifuged at 50,000 g for 2 hr
at 4°C on AH629 rotors in a Beckman refrigerated centri-
fuge. After centrifugation, the tubes were promptly
removed and supernatant decanted. The viral pellet was
resuspended in 0.6 mL of DMEM and stored at -20°C.

In vitro transduction and determination of lentivector
titre

This was performed as we previously reported [20].
Briefly, cultured 293T cells were seeded at 5 x 10> cells and
transduced with serially diluted and concentrated viral
vector stocks 16-18 hours after seeding when cells were
about 70% confluent. For each transduction, 8 pug/mL of
polybrene (Sigma) was included in the transducing inoc-
ulum. Forty-eight hours after transduction, EGFP positive
fluorescent cells were counted using epifluorescent micro-
scope (Nikon eclipse E600, Japan) with the fluorescein
isothiocyanate (FITC) excitation-emission filter set at 470
nm. The viral vector titre was determined as the average
number of EGFP positive cells per 20 1-mm? fields multi-
plied by a factor to account for dilution of the viral stock
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as well as plate size and thus total cell number. Alterna-
tively, 48 hours after transduction, cells were harvested,
resuspended and sent for FACs analyse at a local FACS
facility (Queensland Institute of Medical Research, QIMR,
Brisbane, Australia).

Transduction — studies of target cell volume and number
293T cells at 1 x 103, 3 x 104 or 1 x 10> per well were
seeded in triplicate in 24-well plates. Transduction was
performed with the same stock of viral supernatant using
volumes of 100 pl, 300 pl and 1 ml for 2 hours in the pres-
ence of 10 pug/ml polybrene. After the incubation period
the cells were washed with fresh growth medium twice
and allowed to grow for 2 days before the cells were
trypsinised and fixed with 2% formaldehyde + 0.2% glu-
taraldehyde in PBS. EGFP positive and total cell numbers
were counted with a haemocytometer using epi-fluores-
cence microscopy.

Transduction - studies of variable vector-cell contact and

adsorption periods

293T cells were grown in 24-well plates to approximately
70% confluence. The cells were incubated with 500 pl of
pHR' CMVLacZ supernatant for 10 min, 30 min, 1 hr, 2 hr,
4 hr and 17 hours. After the indicated incubation period
the viral supernatant was removed and replaced with fresh
media. Forty-eight hours post-transduction, cells were
stained to check for the presence of LacZ with the follow-
ing solution: 5 mM K;Fe(CN),, 5 mM K,Fe(CN)..3H,0,
2 mM MgSO,, and 1 mg/ml X-gal in PBS. Blue cells or col-
onies were counted as positive for gene transfer.

Transduction — studies of vector decay

Cell-free viral vector-containing supernatant was incu-
bated at 37°C for 30 min, 2 hr, 4 hr, or 24 hr prior to
being used as the transducing medium (500 pl), with
experimental samples in triplicate. 293T cell at 70% con-
fluent cultures were exposed to the transducing media for
2 hours, after which the inoculum was removed and the
cultures replenished with fresh media. Forty-eight hr post-
transduction, cells were stained to check for the presence
of LacZ with the X-gal solution. Blue cells/colonies were
counted in 3 fields and the average used as the titre at that
time point.

Transduction - studies of MOI and transgene expression
293T cells were plated in a 10 cm plate at 1 x 10> cells/
plate. Transduction was performed with viral vector stocks
ataMOI of 2, 4, 8, 16 and 32 in the presence of 10 pg/ml
polybrene (Sigma). Transduced cells were passaged every
three days and EGFP positive cells sorted at a local FACS
facility (QIMR, Brisbane, Australia).
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Higher inoculum volumes (more vector particles) and increased number of target cells resulted in higher efficiency of gene
transfer. This was true over a range of target cells from | x 103to | x 105and volumes from 0.1 ml to | ml. However the
increase in gene transfer was not proportional to the increase in inoculum volume. e.g. a 10 fold increase in volume resulted in
only a 3.7 to 4.7 fold increase in transduction efficiency. The values represent mean * SD (n = 4).

Flow cytometry

Flow cytometry analysis was performed to evaluate the
expression of lentivirus vector-mediated gene transfer.
Cells were washed with PBS, and then fixed with 1% para-
formaldehyde before the analysis. Samples were analysed
on a FACScan flow cytometry in QIMR.

Results

The inoculum volume of the vector and the number of
target cells affect vector titre determination, but not
proportionally

Figure 1 shows that during the lentiviral vector titration
process, the higher the inoculum volume of the vector (ie.
more viral vector particles) the more numbers of posi-
tively transduced cells. This was true over a range of target
cells tested from 1 x 103to 1 x 105 cells/ml. The results
suggest the higher inoculum volume of the vector the
more opportunity for a viral vector to reach a given target
cell.

However, the results contradicted the data from an
amphotropic MoMLYV viral vector-mediated gene transfer
where it was found that by keeping the virus vector con-
centration constant while the inoculum volume varied,
the infectivity remained the same [19]. This discrepancy
was not accounted for by the depth of fluid as in the
present experiments, in the wells (area = 2 cm?) of the cell
culture, the depth of the fluid varied from 0.5 mm (with a

volume of 0.1 ml) to 1.5 mm for the 0.3 ml volume, and
a depth of 5.0 mm for 1 ml of the vector preparation. All
of these depths were well beyond the diffusion limit of rel-
evance to the adsorption of 95% of a retrovirus prepara-
tion. This was because the rate decreased with the square
of the depth, equating to 0.16 mm for a 2.5 hours adsorp-
tion period [2].

Similarly, vector titre was also affected by the number of
target cells used in the vector titration process. A very sig-
nificant increase in vector titre was noticed with increasing
the cell numbers, but the increase was also not propor-
tional. For a 30-fold increase in target cell number
between 1 x 103 and 3 x 104 there was only an average of
9.17-fold increase in total number of transduced cells (for
all transducing volumes). For a further 3.3-fold increase in
cell number exposed in the same area, there was only a
further 2.3 fold increase in total number of transduced
cells. Thus, overall for a 100-fold increase in cell numbers
(from 1 x 103 - 1 x 10°) exposed to vectors there was only
a 21.3-fold increase in total number of transduced cells.
Interestingly, the increase of the number of positively
transduced cells was not proportional to the increase of
the vector inoculum volume. The increase in the number
of transduced cells was proportionally less than the
increase in inoculum volume, e.g. a 10-fold increase in
inoculum volume resulted in only a 3.7 to 4.7-fold
increase in the number of positively transduced cells.
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Vector decay and the period of vector adsorption to target
cells were significant factors in influencing the
transduction process

The length of period of vector adsorption to target cells
was shown to alter the transduction efficiency signifi-
cantly. As the incubation period increased so did the
number of transduced cells (Figure 2a). At 4 hours less

A
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than half of the active vectors had adsorbed on to the cells.
Since vector adsorption to cells was often protracted, the
issue of thermostability of the vector preparation arose as
a negative modulator of transduction efficiency with
increasing time, thereby producing further variation in the
estimated titre and thus the "MOI".

800

number of blue colonies

0 2 4 6 8

10 12 14 16 18

adsorption period (hr)

1000 -+

X-Gal Positive Cells

10

100 _\

Hours

Figure 2

The period of adsorption (a) and vector decay (b) were significant factors in determining transduction efficiency. The duration
of the adsorption period was also shown to alter the transduction efficiency significantly. As the incubation period increased so
did the number of transduced cells. At 4 h less than half of the active vectors had adsorbed to the cells. To estimate the ¢, of
the vector system used here, we pre-incubated the inoculum for increasing periods of time before applying aliquots to the tar-
get cell monolayer. By applying the following equations VA= VA  exp (-k4t) and t 5 = In(2)/k4 to the data, {where VAis the con-
centration of active virus at time t, VA is the initial concentration of active virus, and K is the virus decay rate constant}, the

half-life of the vector was in the 8-9 hr range. The values represent mean £ SD (n = 4).
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Table I: Different titres and MOI were obtained for the same vector stock when different numbers of target cells and volumes of
inoculum were used. The number of positively transduced cells and thus the transduction efficiency, was also affected by the number
of target cells in the transduction process, eg.: a thirty-fold increase in cell numbers resulted in a 53% decrease in efficiency. The
transduction efficiency was highest with the smallest cell number and largest inoculum volume.

Titre TU/mL (followed by MOI)

Number of target cells

I mL of VI Vol.
2.24 x 102(0.224)
2.14 x 103(0.071)
5.58 x 103 (0.056)

0.3 mL of VI Vol.
3.96 x 102(0.119)
3.77 x 103(0.038)
7.79 x 103 (0.023)

0.1 mL of VI Vol.

6.08 x 102(0.061) | x 103
5.14 x 103(0.017) 3x 104
1.19 x 104(0.012) | x 105

TU — Transducing Unit; VI Vol — Volume of Inoculum.

To estimate the half time (t;,)) of the vector system used
here, we pre-incubated the inoculum for increasing peri-
ods of time before applying aliquots to the target cell
monolayer for vector titre determination. The length of
time for which the viral supernatant harvest was left at
37°C (in a cell-free environment) prior to use, noticeably
affected the value of the vector titre (Figure 2b). The viral
vector activity decayed logarithmically with time. By
applying the following equations: VA= VA_exp (-k4t) and
t(1/2) = In(2)/k4 to the data, {where VAis the concentration
of active virus at time t, VA is the initial concentration of
active virus, and K, is the virus decay rate constant}, the
half-life of the vector was in the 8-9 hours range. This is
the first time that lentivector stability has been examined.
This estimation was twice as long as that for wild-type HIV
[1], suggesting that lentivector is much more stable.

Variations in viral vector titration further complicated the
use of MOI for predicting gene transfer events

Lentiviral vector titre (transducing unit per millitre, TU/
ml) was calculated using the number of TU/ml times the
dilution factor of the vector stock, divided by the volume
of vector used in the transduction. As shown in the above
results, the number of positively transduced cells changed
when the transduction conditions varied. Therefore, the
vector titre was affected by inoculum volume, vector sta-
bility and target cell numbers. If vector titres were to be
calculated using the existing formula that was developed
based on retroviral vector-mediated gene transfer, i.e.
EGFP-positive cells (TU) + volume of vector inoculum
(ml), the titre of the original vector suspension would
result in absurdly different figures (see Table 1), with
ranges from 2.2 x 102TU/mL to 1.2 x 104 TU/mL for the
same viral suspension, more than a 50 fold difference.
Likewise, because MOl is based on vector titre (MOI = titre
x TD volume / number of cells), the use of MOI was thus
affected.

Considerable differences existed in the sensitivity of
lentiviral vector-mediated gene transfer in several
conventional cell lines

The sensitivity of lentivector-mediated EGFP gene transfer
to commonly used target cell lines has never been directly
compared previously. In this study, 3 commonly used cell
lines plus a new cell line FRL-19 were included for com-
parison. All cells were seeded in 12 well plate at 5 x 104
cells/well 16-18 hours before transduction. Concentrated
viral vectors with unknown titre were added to each well
at 50 ul, 100 pul, 200 pl, and 400 pl. Medium was changed
every day. All cells were harvested 72 hours after transduc-
tion, washed twice with PBS, and then analysed by FACS.
Figure 3 showed that the percentage of EGFP positive cells
was 88.1% for FRL-19 cells, 52.9% for 293T cells, 34.7%
for NIH 3T3 cells, and 27.8% for 293 cells respectively
when 50 pl viral vector was used for transduction. Clearly
transduction efficiency of lentivector-mediated EGFP gene
transfer to FRL-19 was the highest amongst the four cell
lines tested. It reached 96.7% when 400 pl of viral vector
was used while the transduction efficiency of lentivectors
was only 87.9% for 293T cells, 77.1% for NIH 3T3 cells,
and 63.9% for 293 cells for the same volume of vector
(Fig. 3A). When a third generation of lentiviral vector
packaging system (pMDg/p, pRSV-Rev, gifts from Profes-
sor Didier Trono, Department of Genetics and Microbiol-
ogy, CMU., Switzerland) were used to package a HIVCS-
CMV-EGFP vector, a very similar transduction efficiency
was obtained (Zhang et al., unpublished data). These
results convincingly demonstrated that conventional cell
lines were less sensitive to lentiviral vector-mediated gene
transfer than FRL19, thus grossly underestimating vector
titre.

The sensitivity of cell lines to lentivectors was generally
MOI dependent

We further examined whether the sensitivity of these cell
lines to lentivectors-mediated EGFP gene transfer was
dependent on the MOI. All four cell lines were seeded in
12 well plate at 5 x 104 cells/well 16-18 hrs before trans-
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Figure 3

Efficiency of lentivector-mediated gene transfer to commonly used target cell lines (A) under different MOI (B). Four cell lines
were seeded at 5 x 104well in 12 well plates. Several different inoculum volumes of lentivectors without known titre (A) or
with known titre, ie.: different MOI (B) were added were added to each well (A) or as indicated. The media was changed daily.
Cells were harvested three days after transduction, and washed three times with PBS. Transduction efficiency of lentivectors in
different cell lines was obtained using flow cytometric analysis. Data represents mean value £ SD (n = 4).

duction. Viral vectors with known titre were added to each
well at different MOI (MOI = viral titre/cell number).
Medium was changed every day, with cells harvested 72
hrs after transduction, washed twice with PBS, and then
examined by FACS analysis. Figure 4a shows that trans-
duction efficiency of lentivectors was higher on the FRL-
19 cell line than the other three cell lines. Transduction

efficiency was 67.4% in FRL-19 cells, 33.1% in 293T cells,
23.1% in NIH 3T3 cells, and 8.7% in 293 cells at a MOI of
32. Generally, it was the higher the MOI, the higher the
transduction efficiency (Fig 3B).
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Discussion

We showed in this study that a number of factors within
the vector titration process, ie.: the volume of inoculum,
the number of target cells, cell type and viability/suscepti-
bility, vector exposure time for uptake and vector half life
affected vector titre determination. We were also surprised
to find that the volume of inoculum (with a constant virus
concentration) played such an important role in the deter-
mination of transduction efficiency. It has been
demonstrated that above the cell's surface in MoMLV
based retroviral vector mediated gene transfer, a fluid
layer of 0.1-1 mm thick remained stationary, and this
layer is seen to be the major source of origin of the trans-
ducing elements. The large effects seen with non-agitated
cultures in the present series of experiments with lentiviral
vectors indicated some fundamental differences in the
processes of the transduction pathways of MoMLV based
retroviral vectors and lentivirally derived vectors. During
the transduction process, the rate of collision between the
virions and the surface of the target cells could be pre-
dicted from Brownian theory even when the viral suspen-
sion was being shaken continuously [22]. This appears to
suggest that successful transduction depends on the con-
centration of virus and not the overall number of virions
present, due to the layer effect. The fact that viral vector
titre may vary from the transduction process and that the
MOI was calculated based on the viral titre, suggested that
different vector titres and MOIs could be generated from a
single lentivector stock, making direct comparison of data
difficult, especially when the difference in vector titre was
as high as 50 fold. Therefore, the titre obtained this way
obviously did not represent the true value of active vector
concentration. Rather, it was grossly underestimated
when commonly used cell lines were used as target cells
for vector titration.

The viral stocks of most lentiviral vectors are generally
produced from a 293 or 293T cell lines and the titre calcu-
lated by determining the number of foci (effect of the
marker gene expression) produced in the cell line [23].
For example, if 100 pl of the vector suspension gives rise
to 1 x 103 cells positive for a given marker gene expression,
then the titre of the vector stock would be 1 x 106 TU/ml.
When this vector stock is further used to transduce a new
cell line, MOI is then determined by simply dividing the
number of viral vector units added (ml added x TU/ml)
by the number of target cells added (ml added x cells/ml).
The average number of viral vector particles per cell in a
transduction experiment could be less than 0.1 or more
than 1000 depending upon how the experiment is
designed. However, recent research showed that if MOl is
too low, one may not get enough gene transfer and trans-
gene expression [24]. If MOI is too high, the efficiency of
gene transfer may not be very high, but many copies of
transgene may integrate into the chromosomes of the tar-
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get cells instead, thus causing chromosomal instability
[24].

Employing MOI from 0-32, we demonstrated that effi-
cient transduction of four different cell lines (293, 293T,
NIH3T3, FRL19) resulted in a near liner relationship of
MOI to transduction efficiency, the higher the MOI, the
higher the transduction efficiency. This was somewhat
surprising and contradicted traditional MoMLV based
vectors, which showed an obvious plateau when the MOI
was increased to about 3 [3]. The reason for this is unclear,
but the fact that lentiviruses are more complicated
retroviruses, having more sophisticated machinery for
replication and integration than MoMLYV, as well as that
lentiviral vectors were exploiting the pseudotyped enve-
lope (VSV-G utilises a different receptor), may probably
explain the difference in gene transfer efficiency. The VSV-
G envelope, binds to its target in cell membranes which
are known to be phospholipids, such as phosphatidylcho-
line (PC) and phosphatidylserine (PS), (the receptors for
VSV-G). PC is the most abundant membrane phospholi-
pid while PS domains are present in much smaller quan-
tity but bind more strongly and fuse faster with the VSV-G
protein [25]. This issue is probably one of the most over-
looked variables in vector transduction. Membrane phos-
pholipid movement is highly dynamic. Its biosynthesis
and degradation are very much dependent on cell type
and positions in the cell cycle and/or metabolic activity.
Also, the rate of degradation is rapid in G, slows drasti-
cally during S phase, and picks up the pace again as cells
exit mitosis and re-enters G,[26], which suggests that the
cell cycle phase may be an important variable for VSV-G
protein coated lentiviral transduction, and may contrib-
ute to the time dependence of the transduction efficiency
observed in the present experiments. A further contribu-
tion to the volume effect may be increased cellular phos-
pholipid uptake from the serum in the expanded volume
of medium used for the delivery of the increased total vec-
tor or possibly enhanced phospholipid synthesis in a
more generous nutritional environment. Cells double
their phospholipid mass while maintaining the correct
relative composition prior to cytokinesis [27]. Theoreti-
cally, during the intermitotic period the target cells will
double the number of target binding sites for the viral vec-
tors as well as allowing a period with the more favourable
conditions (DNA synthesis) for integration. The amount
of PC in the total membrane mass varies from 40-80% of
the total P-lipid, depending on the cell type [27] and this
variation may explain the discrepancies in transduction
efficiencies observed with different cell lines using inocula
of the same volume and titre of vector.

In the real world of gene transfer experiments, transduc-
tion conditions will be optimised to achieve the maxi-
mum efficiency. Generally, a high MOI is needed for
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satisfactory levels of gene transfer. Ideally, with a MOI of
2, every single cell might be expected to experience an
average of two gene transfer events in a given transduction
experiment, but probabilistic considerations of viral and
vector-cell interactions ensure that this does not occur (i.e.
only 67% of the cells would be "infected"). As seen in the
current data, however, the efficiencies of transduction are
very much less than the theoretical outcomes. Our study
with lentiviral vector convincingly showed that the higher
the MOYJ, the higher the efficiency of gene transfer and the
level of gene expression. However, experiments employ-
ing MOI even greater than 1000 have still resulted in less
than 100% of cells transduced [11,28,29] indicating the
presence of unexplained variables in the cell dependence
of the transduction process.

Conclusions

MOI is only a useful term for predicting transduction effi-
ciency under very carefully defined experimental condi-
tions. The assumption is not valid that changes in any one
of the variables shown to be important in the in vitro vec-
tor titration process will cause proportional changes in the
magnitude of the transduction efficiency. It is thus evident
that MOl is not applicable as a simply manipulable quan-
tity in most gene therapy uses of the lentiviral vector sys-
tem. Since clinical applications are an important outcome
of gene transfer manipulations, and ultimately this may
be done by in vivo delivery, the awesome task of evaluating
the efficiency of transduction via this route will require
considerable ingenuity. If MOI for lentiviral vector trans-
duction has to be used for rigorous comparisons of data,
then the specific experimental conditions for vector titra-
tion, with using the most sensitive cell lines, such as FRL
19, must be strictly observed for infectivity outcomes to be
predictable.
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