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Abstract

Background: Malaria causes immense human morbidity and mortality globally. The plasmodium species vivax and
falciparum cause over 75 % clinical malaria cases. Until now, gene-based strategies against malaria have only been
applied to plasmodium species and their mosquito-vector. Merozoites of these two respective plasmodium species
target and invade red blood cells (RBCs) by using the duffy antigen receptor for chemokines (DARC), and Sialic Acid
(SLC4A1) residues of the O-linked glycans of Glycophorin A. RBCs of naturally selected duffy-negative blacks are
resistant to P.vivax tropism. We hypothesized that artificial aberration of the host-pathway by target mutagenesis of
either RBC –receptors, may abolish or reduce susceptibility of the host to malaria. As a first step towards the
experimental actualization of these concepts, we aimed to identify zinc finger arrays (ZFAs) for constructing ZFNs
that target genes of either wild-type host-RBC- receptors.

Methods: In-Silico Gene & Genome Informatics

Results: Using the genomic contextual nucleotide-sequences of homo-sapiens darc and glycophorin-a, and the
ZFN-consortia software- CoDA-ZiFiT-ZFA and CoDA-ZiFiT-ZFN: we identified 163 and over 1,000 single zinc finger
arrays (sZFAs) that bind sequences within the genes for the two respective RBC-receptors. Second, 2 and 18 paired
zinc finger arrays (pZFAs) that are precursors for zinc finger nucleases (ZFNs) capable of cleaving the genes for darc
and glycophorin-a were respectively assembled. Third, a mega-BLAST evaluation of the genome-wide cleavage
specificity of this set of ZFNs was done, revealing alternate homologous nucleotide targets in the human genome
other than darc or glycophorin A.

Conclusions: ZFNs engineered with these ZFA-precursors–with further optimization to enhance their specificity to
only darc and glycophorin-a, could be used in constructing an experimental gene-based-malaria vaccine.
Alternatively, meganucleases and transcription activator-like (TAL) nucleases that target conserved stretches of darc
and glycophorin-a DNA may serve the purpose of abrogating invasion of RBCs by falciparam and vivax plasmodia
species.
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Background
Malaria is an infectious cause of immense human-
morbidity and mortality world-over [1]. About 250
million cases of malaria are reported annually. Despite
presence of effective Artemisinin-based combination
chemotherapy for treating clinical malaria, the disease
still claims over 1 million lives annually, most-children
under the ages of 5 years [2,3]. Attempts to eradicate
malaria through controlling the binomics of its vector-
the female anopheles mosquito through use of insecti-
cides are contravened by fears of toxicity and potential
risk of evolution of resistance to DDT, the would be
ideal agent [4]. As a result, malaria continues to cause
not just individual morbidity and mortality, but signifi-
cant economic losses. Up-to 1.3 % decline in gross
domestic product (GDP) is experienced within coun-
tries with high levels of transmission. Overall, within
malaria endemic regions of the tropics and sub-tro-
pics, clinical malaria is responsible for up to: 40 % of
public health expenditures, 30 % to 50 % of inpatient
hospital admissions, and 60 % of outpatient health
clinic visits [1-4].
Malaria is caused by species of protozoa belonging to

the genus Plasmodium [1,5]. There are well over 100 dif-
ferent species of plasmodia and the parasite is capable
of infecting many animal species such as reptiles, birds,
and various mammals. Nonetheless, only five Plasmo-
dium species: P. falciparum, P. vivax, P. malariae, P.
ovale, and P. knowlesi have been recognized to infect
and cause clinical-malaria in humans [6]. Plasmodium
knowlesi, a species that was previously only known to
naturally infect macaques, has in recent years been
recognized to cause zoonotic malaria in humans [5,7].
The Plasmodia species falciparum and vivax are the
most common, causing over 70 % of all cases of clinical
malaria globally [7].
Considering that falciparum is the most deadly plas-

modia species, majority efforts to devise a malaria pre-
ventive vaccine have focused on it [7]. A safe and
effective P.falciparum targeting subunit malaria vaccine
however remains to be demonstrated [8,9]. Indeed, some
have argued that the complexity of the malaria parasite
precludes the successful development of a sub-unit vac-
cine, thereby resorting to use of whole-live-attenuated P.
falciparum as vaccine-candidates [10,11].
The life-cycle of plasmodia has both a mosquito- and

host-based sub-division. The hallmark of clinical malaria
in man is, however, defined by invasion of red blood cells
(RBCs or erythrocytes) by the parasites [12,13]. P. vivax
and -falciparum, each utilize unique receptors present
on the surface membrane of erythrocytes for their inva-
sion. On one hand, the duffy antigen/receptor for che-
mokine (DARC) is the receptor for merozoites of
Plasmodium vivax and Plasmodium knowlesi; and for
chemokines[14-17]. A single T to C substitution at nu-
cleotide −46 in the exon of the DARC gene (darc) is
common among Duffy-negative blacks with a silent
FY*B allele. The same leads to impairment of the pro-
moter activity in erythroid cells by disrupting a binding
site for the GATA1 erythroid transcription factor [18],
thereby resulting into RBC-resistance to invasion by P.
vivax merozoites. On the other hand, sialic acid
(SLC4A1) residues of the O-linked glycans of the major
intrinsic membrane protein of erythrocytes, Glycophorin
A, are the major receptors for P.falciparum invasion of
RBCs[19,20].
Given the prevailing challenges to the development of

an effective malaria vaccine, we hypothesized that target
mutagenesis of the well characterized host RBC-
receptors for P. falciparum and P. vivax, may reduce
global incidence of malaria. Mercereau-Puijalon &
Ménard [21] have recently reported work to suggest that
absolute dependence on the presence of Duffy on the
red cell for P. vivax infection and development into the
red cell is not true, since in some parts of the world, P.
vivax infects and causes disease in Duffy-negative
people. Elsewhere, targeted gene disruption studies of
PfRh-1 and −2 genes of P. falciparum ligands for
SLC4A1-residues by Triglia T et al., [22] and Sahar T
et al., [23] have previously yielded mutants incapable of
sialic acid-dependent invasion of human erythrocytes.
As is the case for evidence to challenge DARC as the
only erythrocyte-receptor for P.vivax merozoites[21],
therefore, those P.falciparum parasites that are mutated
in PfRH- 1 and 2 proteins are known to invade Sialic
acids defective-RBCs normally, by using ligand-receptor
interactions pathways that are independent of SLC4A1-
residues, and are neuraminidase-resistant [22,23]. Argu-
ably, such plasmodia mutants capable of using alternate
receptors to invade RBCs are likely to be still rare, and
their selective adaptability poor.
Zinc finger nucleases - ZFNs - which are artificial,

hybrid restriction enzymes [reviewed in ref. 24, 25],
have recently become a powerful tool for primary edi-
tion of host genomes as a strategy to halt pathogen in-
fectivity [24,25]. Perez E et al. [24], Holt N et al. [25],
and Wilen CB et al. [26] have previously demonstrated
the establishment of HIV-1 resistance in CD4+ T cells
through generation of a double-strand break (DSB) at
predetermined sites in the CCR5 coding region up-
stream of the natural CCR5D32 mutation using engi-
neered ZFNs targeting human CCR5. As an initial step
towards the experimentation of a similar approach
against malaria, we aimed to identify zinc finger arrays
(ZFAs) that are precursors of zinc finger nucleases
(ZFNs) to be used for mutating wild-type host-RBC-
receptors for merozoites of the most prevalent malaria
parasites: P.-vivax and - falciparum.
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Methods
The overall design of this study was Bioinformatics
(In-Silico gene/genome informatics). There was no re-
quirement for approval from the authors institutional
review boards (IRB).

A. Identity of unpaired zinc finger arrays (sZFAs) binding
darc/glycophorin-a
Materials and software
Genomic contextual- DNA-sequences of the homo-
sapiens darc [GenBank IDs: 2532; genomic loci 1q21-
q22] & glycophorin-a [GenBank IDs: Gene ID: 2993;
and genomic 4q31.21] genes; along with the ZFN-
consortia software- CoDA-ZiFiT-ZFA.

Interventions
The 2.49 kb-darc and 31.45 kb glycophorin-a genomic
contextual- nucleotide sequences were separately fed
into the CoDA-ZiFiT-ZFA user interface. Analysis was
done according to the prescribed user protocols [25-27].
The CoDA-ZiFiT-ZFA software was used at the preset
default settings, with specification for 3 ZF-array size
(recognizing 9 nucleotides).

B. Assembly of paired zinc finger arrays (pZFAs) binding
darc/glycophorin-a
Materials and software
Genomic contextual- DNA-sequences of the homo-
sapiens darc [GenBank IDs: 2532; genomic loci 1q21-
q22] & glycophorin-a [GenBank IDs: Gene ID: 2993;
and genomic 4q31.21] genes; along with the ZFN-
consortia software- CoDA-ZiFiT-ZFN [25-27].

Interventions
The 2.49 kb-darc and 31.45 kb glycophorin-a long gen-
omic contextual- nucleotide sequences were separately
fed into the CoDA-ZiFiT-ZFN user interface. Analyses
were conducted as per prescribed user protocols [25-27].
The CoDA-ZiFiT-ZFN software was used at the preset
default settings, with specification for 5, 7, and 6 ‘spacer’
regions between the specificity sites of the pair of zinc
finger array-precursors of ZFN.

C. Mega-BLAST search for potential off-target sequences
in the human genome
Materials and software
Target-cleavage sites for the model-ZFNs shown in
Table 1, and the human genome build 37.3 along with
its associated BLAST-N software.

Interventions
Each of the ZFN’s target nucleotide sequences were sep-
arately fed into the blast-n interface at default and off-
target sequences identified as homologous sequences
(>100 % identity).

D. Software and Database Availability

� The ZFN consortium CoDA-ZiFiT-ZFA/ZFN
software and algorithms used are available at the
following url: http://www.zincfingers.org/scientific-
background.htm

� The NCBI human genome build 37.3 database
hosting the complete darc and glycophorin-a
genomic contextual DNA sequences used, is
available at the following url: http://www.ncbi.nlm.
nih.gov/genome/guide/human/

Results
Identity of unpaired zinc finger arrays to bind darc and
glycophorin-a sequences
We identified 165 and close to 1,000 unpaired or single
zinc finger arrays (sZFAs) that bind the sequential nu-
cleotide sequences constituting the genes for the two
erythrocyte receptors for the merozoites of P. vivax and
- falciparum (see Additional file 1 for darc binding
sZFAs, Additional file 2 for glycophorin-a binding
sZFAs, respectively). In principle, these zinc fingers are
protein-motifs that have two beta strands and an alpha
helix. The three sets of strands are stabilized through co-
ordination of a zinc ion mediated by pairs of conserved
cysteine and histidine residues [27]. Within the context
of this complex, residues −1 to 6 of the alpha-helix of
the ZFAs are responsible for the recognition of triplets
of DNA sequences through the formation of base-
specific contacts in the major groove of the double-
stranded target DNA. These so-called ‘recognition resi-
dues’ are listed in N- to C-terminal direction [28,29]. As
a consequence, the recognition sequences of the ZFA
bind target DNA sites in a reverse pattern (amino acids
1–6 of the ‘recognition’ alpha helix bind onto consecu-
tive nucleotides in DNA in the 3' to 5' direction) [30].
An illustration of the distribution of the target-DNA-
binding sites for the unpaired or single (sZFA) identified
in our study, along the gene-context of the homo-sapien
darc gene is shown in Figure 1. Details of the pattern of
the ZFA-binding to DNA of sialic acids within glyco-
phorin-a are not shown.

Assembly of paired zinc finger array (pZFA)-precursors of
nucleases to cleave darc and glycophoin-a sequences
We assembled another set of 2 and 18 paired zinc finger
arrays (pZFA) that are candidate precursors for engin-
eering nucleases (ZFNs) that cleave within the context
of nucleotide sequences of the genes encoding the same
erythrocyte receptors- DARC and Glycophorin A re-
spectively (see file Additional 3 for darc specific ZFNs,

http://www.zincfingers.org/scientific-background.htm
http://www.zincfingers.org/scientific-background.htm
http://www.ncbi.nlm.nih.gov/genome/guide/human/
http://www.ncbi.nlm.nih.gov/genome/guide/human/


Table 1 Two paired ZFAs (pZFAs) required to engineer ZFNs that cleave within the human genomic context of the darc
and glycophorin a genes

Zinc Finger Nuclease (ZFN) Left Fn α-Helix; triplet Right Fn α-Helix; triplet

-darc

ZFN-unknown-SP-5-1 F1; SPSKLVR; (GCG) F1; SKKSLTR; (GCC)

1745 tGCCCTCTTCAGCATTGTGGTGCCc 1769 F2; RQDNLGR; (GAG) F2; EAHHLSR; (GGT)

1745 aCGGGAGAAGTCGTAACACCACGGg 1769 F3; QRNNLGR; (GAA) F3; QPHGLAH; (TGT)

-glycophorin-a

ZFN-ASSEMBLY-SP-7-4 F1; RSSHLKM; (AGG) F1; RRVDLL; (GCC)

8812 F2; QRSDLTR; (GCT) F2; RQDNLGR; (GGT)

tCCTAGCTACTTGGGAGGCTGAGGCAg 8838

8812 aGGATCGATGAACCCTCCGACTCCGTc 8838 F3; QSGTLTR; (GTA) F3; VSNTLTR; (GCT)
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and Additional file 4 for some of the glycophorin A spe-
cific ZFNs). The consensus amino-acids sequences of
the DNA binding domains of the the paired ZFAs (left
and right-helix) which constitute nucleases cleaving
within darc and glycophorin-a nucleotide sequences are
shown in table I. The actual ZFNs can artificially be con-
structed by recombinantly linking the coding-nucleotide
sequences of any pair of ZFAs to the DNA-cleavage do-
main of the Flavobacterium okeanokoites type II class
endonuclease, FN (Fok I) as previously simulated in-vivo
by Kim, et al. [30]. The resulting ZFNs bind as dimers to
their target DNA sites in-vivo, with dimerization of the
ZFNs-monomers being mediated by the FokI cleavage
domain through cleavage of a five or six base pair ‘spa-
cer’ sequence that separates the two inverted target
‘half sites’ [27-29,31,32]. It should be noted, that the
DNA-binding specificities of zinc finger domains can
be re-engineered using one of various methods, enab-
ling customized ZFNs to be constructed that target
nearly any gene sequence [27]. The distribution of the
target cleavage sites of the model-ZFNs along the
length of the genomic contextual sequences of the
darc and gyclophorin-a genes are respectively shown in
Figures 2 and 3.

c). Mega-Blast search for potential off-target homologs in
the human genome
In order to further examine the specificity of the model-
ZFNs in (b) above for darc and glycophorin-a, we con-
ducted a mega-BLAST survey for genes within the NCBI
Figure 1 Schematics of target DNA-binding by ZFAs along the
darc gene. This figure graphically illustrates the sites and frequency
of single ZFAs that bind to nucleotide sequences within the context
human darc gene. Note that there are ZFAs capable of sequentially
binding at almost all positions within the darc gene.
human build 37.3 genome whose corresponding
nucleotide-sequences are homologous to the target
sequences of the two model-ZFNs targeting darc and
glycophorin-a shown in Table 1 (detailed results avail-
able as query IDs: IcI |56721, and IcI |45777). Several
genes with the predicament of yielding off-target clea-
vages were identified. It is important to note that, such
potential off-target genes are likely to be more, given
that Pattanayak V et al. [33] and Gabriel R et al. [34]
have recently demonstrated that off-target cleavage spe-
cificities are best revealed by in-vitro rather than in-silico
selection methods. These data uniquely underline the
need for further optimization of the set of ZFNs identi-
fied in our study prior to in-vitro and in-vivo experimen-
tal trail. Such optimization should include but not
necessary be limited to: (i) in-vitro optimization using a
bacteria-one hybrid (B1H) or yeast-one-hybrid (Y1H)
system [35] and (ii) modifications to the cleavage do-
main in order to generate a hybrid capable of function-
ally interrogating the ZFN dimer interface so as to
prevent homodimerization, while still enhancing the effi-
ciency of cleavage [36].

Discussion
We explore ZFA-precursors of ZFNs that may be used
for target mutagenesis and abrogation of RBC-receptors
for merozoites of two major malaria causing plasmo-
dium. The complexity of the malaria causing parasite-
Figure 2 Schematics of cleavage-sites by ZFNs along the darc
gene. This figure graphically illustrates the sites and frequency of
ZFN cleavage of the darc gene. Two ZFN cleaving at positions
approximately 0.5 and 0.75 within the context the darc gene are
shown, although others could be re-engineered by the methods
described in the text [22,23,28]. Hits (blue, green, and gold bars)
represent targets along the gene (red bars). ZFN hits in the graphic
are color-coded based on spacer size (5 bp = Blue; 6 bp = Green; 7
bp = Gold).



Figure 3 Schematics cleavage-sites by ZFNs along the
glycophorin-a gene. This figure graphically illustrates the sites and
frequency of ZFN cleavage within the human glycophorin-a gene.
Note the presence of ZFNs cleaving at positions approximately 0.02
and 0.92 within the context of the glycophorin-a gene. These are
suited for the complete excision of this gene from the genomes of
transduced erythroid precursor cells (through non-homologous
end-joining), although many more ZFNs with specific-disruptive
potential to only specified areas of the same gene, may be
constructed. Hits (blue, green, and gold bars) represent targets along
the gene (red bars). ZFN hits in the graphic are color-coded based
on spacer size (5 bp = Blue; 6 bp =Green; 7 bp =Gold).
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plasmodium, which precludes the development of an ef-
fective sub-unit malaria vaccine, has led to the evolution
of gene-based strategies that aim to modify and attenu-
ate either plasmodium [10,11] or the mosquito-vector
[4]. Basing on the knowledge base that--merozoites of
the two most prevalent Plasmodium species-falciparum
and vivax respectively, by using- the Duffy Antigen Re-
ceptor for Chemokines (DARC), and Sialic Acid
(SLC4A1) residues of the O-linked glycans of Glyco-
phorin A specifically target and invade red blood cells
(RBCs), we hypothesized that artificial aberration of
either host-pathway by target mutagenesis of the re-
spective RBC –receptors, may abolish or reduce suscep-
tibility of the host to malaria [14-23]. As shown in
Figure 1 and supporting files 1 and 2, single or unpaired
ZFAs (sZFAs) that bind to sequential nucleotide
sequences within the genomic context of the darc and
gycophorin-a genes were identified. Another set of
paired-ZFAs (pZFAs) to use for engineering ZFNs that
target and cleave within genes encoding either plasmo-
dium RBC-receptors was assembled (see Figures 2 and
3, and supporting files 3 and 4). On mega-blast evalu-
ation, however, several homologous off target sequences
(which may be accessed online as NCBI-human gen-
ome-BLAST query/result IDs: IcI |56721, and IcI |45)
were uncovered within the human genome. Arguably,
multiple ways to practically reduce ZFN cleavage at off-
target sites are available. For instance, (i) chosing a tar-
get that has minimal homology with other sites in the
genome, (iii) avoiding the use of high affinity zinc-finger
DNA –binding domains, (iii) and using the lowest con-
centration of ZFN to perform cleavage of the target
gene, are some. As already noted above in section c of
our results, improvements in design are also possible by
(i) in-vitro optimization using a bacteria-one hybrid
(B1H) or yeast-one-hybrid (Y1H) system [35] and (ii)
modifications to the cleavage domain in order to gener-
ate a hybrid capable of functionally interrogating the
ZFN dimer interface so as to prevent homodimerization,
while still enhancing the efficiency of cleavage [36].
Alternatively, however, transcription activator-like ef-
fector nucleases (TALENs) and or mega-endonucleases
are alternative designer nucleases that recognize longer
DNA sequence and potentially reduce the off-target
cleavage [37]. The prevailing limitations in the in-vitro
and or in-situ capacity of our laboratory, non-the-less,
stood in the way of experimental trial of such necessary
optimizations and improvements.
We propose that, using the paired zinc finger arrays

(pZFA), ZFNs that cleave within the genomic context of
the darc and glycophorin a gene sequences may be engi-
neered using the protocol previously described by Kim,
et al. [30]. Once this is achieved, the issuing-ZFNs could
be experimentally usable to abolish the respective host-
pathways for RBC infectivity by the most two prevalent
malaria parasites. Such a strategy—when translated to
the clinic may drastically reduce the global malaria inci-
dence. The feasibility of this approach is supported by
existing evidence pointing to resistance of RBCs of nat-
urally selected duffy-negative blacks to P.vivax tropism
[14-18,21]. However, as is further discussed below
regarding mutants capable of invading RBCs using alter-
native pathways, keen readers will observe that the
ground for making such an argument is not solid. In
principle, recombinant strategies for uniquely expressing
a diploid copy (really pair) of the above ZFN-genotypes
within- erythroid precursor cells or reticulocytes rather
than other host cells, should offer us a host-targeted
gene-therapy and preventive vaccine against malaria. For
example, recombinant vectors based on the human
Parvovirus B19 that naturally target erythroid progenitor
cells, or lentiviral vectors whose tropism has been
adapted in-vivo to erythroid progenitor cell-lines may
suffice [38-42]. Progenitor cell-lines of RBCs form the
right target for this type of genetic vaccine, because of
two major reasons. First, immature RBCs have usually
not yet lost their nuclei, while adult RBCs lose their nu-
clei in the process of specialization to enhance the vol-
ume occupied by the oxygen carrying molecule,
hemoglobin. Second, adult RBCs are sequestered every
three to four months, being replaced by new ones arising
from the stem cells in bone marrow. The complexity
and expensive-nature of these propositions relative to
the available knowledge-base and capacity on ground
within high-malaria endemic areas of the world are chal-
lenges to note. It is our hope that these challenges will
not abstruse the scientific quest for the necessary pre-
clinical data to support the safety and efficacy of the
same within cell-line or animal models. Perhaps such
data may help gunner support for the eventual clinical
trial of this approach. At this point, it is important to re-
emphasize the prior findings by Mercereau-Puijalon and
Ménard [21] challenging absolute dependence on the
presence of Duffy on the red cell for P. vivax infection
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and development into the red cell is not true. Similarly,
P.falciparum parasites that are mutated in PfRH- 1 and
2 proteins have equally been described [19,20]. The glo-
bal prevalence and distribution of such mutant plas-
modia is however not known [21]. In addition, the P.
falciparum cited to be mutated in PfRH- 1 and 2 pro-
teins were only laboratory clones rather than naturally
selected mutants— a fact that makes the natural evolu-
tion of such mutants to remain uncertain [19,20]. Theor-
etically, one could also argue that mutants in these
major receptors may be selectively disadvantaged over
the wild-type plasmodia. Therefore, while there is scanty
data pointing to the existence of plasmodia capable of
invading RBCs independent of these two major recep-
tors, their influence on the efficacy of our proposed
gene-therapeutic approach remains uncertain. Specific-
ally, our proposed gene-vaccination strategy against mal-
aria can only be said to be unsustainable in the face of
evolutionary-dynamics of plasmodia versus host wherein
plasmodia keep adapting to use alternate RBC-receptors.
Nevertheless, the favorability of this pattern of natural
selection and fitness of the issuing mutants over wild-
type plasmodia, remains to be examined. Overall, given
the conflicting reports, it is ideal that actual experi-
ments—which are beyond the existing capacity in our la-
boratory, are conducted to test whether ZFNs against
DARC and glycophoin-a indeed prevent P. vivax and P.
falciparum infection.

Conclusion
We argue that ZFNs engineered with these ZFA-
precursors—given the appropriate optimization in-vitro
to enhance their specificity to only darc and sialic acids,
could potentially be applied to the development of an
experimental gene-based-Malaria vaccine. Alternatively,
meganucleases and transcription activator-like (TAL)
nucleases that recognize longer stretches of darc and
glycophorin-a DNA may serve the specific purpose of
abrogating invasion of RBCs by falciparam and vivax
plasmodia species.
In-vivo disruption of these genes within only RBCs

should be effectible using either erythroid progenitor or
reticulocyte specific recombinant parvovirus or lentiviral
vectors that deliver and transduce a diploid copy of the
optimized DARC and Sialic acid specific ZFNs.

Additional files

Additional file 1: A list of the ZFAs binding to sequences of the
human darc-gene. This file offers a detailed list of the 163 ZFAs that
bind sequences of the human darc-gene.

Additional file 2: A list of 168 ZFAs binding to sequences within
the human glycophorin-a gene. This file details the recognition
domains of the 168 ZFAs that bind to nucleotide sites within the first 6,
873 bp of the human glycophorin-a gene. Overall, there were ZFAs
capable of binding to sequences across the entire 31,451 bp of the
human glycophorin-a gene.

Additional file 3: A list of the 1–6 recognition domains of the
alpha-helix of one of the paired ZFAs for engineering ZFNs that
cleave the human darc-gene. This file offers a detailed list of the 1–6
recognition domains of the alpha-helix of one of the paired ZFAs for
engineering ZFNs that cleave the human darc-gene.

Additional file 4: A list of the 1–6 recognition domains of the
alpha-helix of one of the paired ZFAs for engineering ZFNs that
cleave the human glycophorin-a gene. This file offers details of the
1–6 recognition domians (denoted F1, F2, F3/F3, F2, F1) of the
alpha-helix for the 18 assembled paired ZFAs for engineering ZFNs that
cleave within the human glycophorin-a gene.
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