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Abstract
Several studies have shown that cell-mediated immune responses play a crucial role in controlling
viral replication. As such, a candidate SARS vaccine should elicit broad CD8+ T-cell immune
responses. Several groups of mice were immunized alone or in combination with SARS-
nucleocapsid immunogen. A high level of specific SARS-CD8+ T-cell response was demonstrated
in mice that received DNA encoding the SARS-nucleocapsid, protein and XIAP as an adjuvant. We
also observed that co-administration of a plasmid expressing nucleocapsid, recombinant protein
and montanide/CpG induces high antibody titers in immunized mice. Moreover, this vaccine
approach merits further investigation as a potential candidate vaccine against SARS.

Introduction
The SARS epidemic had a high mortality rate as well as a
huge economic impact worldwide. Treatment with antivi-
ral drugs or an effective vaccine is not available for protec-
tion against this disease [1,2]. The SARS-CoV is a single-
stranded RNA virus that has been identified as a new type
of coronavirus. The genome is approximately 30 kb long
and contains four structural proteins: spike, envelope,
matrix and nucleocapsid in the same order as other coro-
naviruses [3,4]. However, the sequence analysis of SARS-
CoV with other members of the coronavirus family did
not show more than 20% nucleotide homology [5].

The SARS-NC gene encodes a 46 kDa protein that partici-
pates in the replication and transcription of the virus and
interferes with the cell cycle of host cells [6]. Previous
studies in other coronavirus members suggest that this
protein is highly immunogenic and could be a good target
for the design of an effective vaccine [7-10]. The expres-
sion of NC in CHO cells led to the observation that this
protein folds spontaneously into viral-like particles
(VLPs). These particles are effectively incorporated at sev-
eral stages of the virus life cycle, including assembly, bud-
ding from cells, and receptor-binding leading to
membrane fusion. The viral particles also present antigens
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to the immune system in a structure that mimics the infec-
tious virion [11-13].

DNA vaccines are able to induce both humoral and cellu-
lar immune responses and have demonstrated their effi-
cacy in several experimental models [14,15]. There are
several eukaryotic vectors that express recombinant pro-
teins efficiently. However, the uptake of antigens and its
presentation are critical elements in DNA vaccination
strategies. One strategy to increase the potency of DNA
vaccines is to prolong the survival of antigen presenting
cells (APCs), especially dendritic cells. Previous studies
show that survival of dendritic cells is increased in the
presence of anti-apoptotic factors such as XIAP. This
approach has results in increased amounts of antigen-spe-
cific CD8+ T cells [16,17].

Specific CD8+T-cells play an important role in the control
of viral infection [18-20]. Activation of specific CD8+ cells
results in the secretion of inflammatory cytokines (IFN-γ
and TNF-α) [21] and the synthesis of effector molecules,
such as perforin and granzymes which kills infected cells,
decreasing virus replication and virus load [22,23].

The present study characterizes cellular and humoral
immune responses to SARS-CoV in mice receiving a DNA-
NC construct alone or in combination with protein and
different adjuvants. The combination of DNA-NC, pro-
tein and XIAP elicited a significant anti-SARS CD8+ T-cell
response independent of CD4+ T-cell immune responses.

Materials and methods
Cell culture
Chinese Hamster Ovary (CHO) cells were grown at 37°C,
5% CO2 in Iscove's Modified Dulbecco's Medium
(IMDM: Sigma, St. Louis, MO) and supplemented with
10% Fetal Calf Serum (FCS: Life Technologies, Grand
Island, NY), 100 U/ml penicillin and 100 µg/ml
gentamyin.

Construction of DNA plasmids
Total RNA was purified using an RNeasy extraction kit
(Qiagen, Mississauga, Ont) from the lung tissue of an
autopsied patient who died from SARS. The full-length
NC (1.2 kb) gene was amplified using specific primers
(forward primer: 5'-ggatccatgtctgataatggaccc-3'; reverse
primer: 5'-gaattcttatgcctgagttgaatc-3'). The amplicon was
purified using the QIAquick gel extraction kit (Qiagen)
and cloned into the PCR 2.1 TOPO-TA vector (Invitrogen,
Burlington, Ont) according to the manufacturer's instruc-
tions. After plasmid digestion, the 1.2 kb band corre-
sponding to the NC gene was sub-cloned into BamHI-and
EcoRI sites of pVAX-1 which contains a CMV promoter for
high level expression in vivo. The fragment was also sub-
cloned into the pEF6-Myc/His (Invitrogen) and pQE

(Qiagen) vectors. The pEF6 vector was designed to over
produce recombinant proteins in mammalian cell lines
and was used to establish a stable cell line by using a
resistant blasticidine gene. The pQE Tri system vector was
used for production of proteins in bacteria. These vectors
ultimately allow for the purification of the protein by
immobilized metal affinity chromatography. All expres-
sion constructs were confirmed and characterized by
restriction enzymes and nucleotide sequence analysis.

Expression of recombinant nucleocapsid protein
CHO cells and JM109 bacteria were transfected with pEF6
and pQE vectors containing NC or vector alone. In order
to increase and sustain expression of the NC protein, a sta-
ble NC expressing CHO cell line was established using
blasticidine-supplemented medium. Cells were harvested,
sonicated and lysed in lysis buffer (25 mM Tris base, 2.5
mM Mercaptoethanol, 1% Triton-X100 and a cocktail of
protease inhibitors). Cell pellets were centrifuged and the
supernatant was incubated with the TALON metal resin
(Clontech, Palo Alto, CA) for one hour. After incubation,
the mixture of protein-resin was added to the columns
and washed three times with 20 bed volumes of Tris-Cl,
NaCl (PH 8). The recombinant protein was eluted with
150 mM imidazole.

To confirm the proteins, samples were mixed with Lae-
mmli loading buffer, boiled for 5 minutes and loaded on
a 10% polyacrylamide gel. The proteins were then trans-
ferred to a nitrocellulose membrane by electrophoretic
transfer. The membranes were blocked with 5% dried
milk in PBS-Tween 20 (PBS-T) and incubated with 1/3000
dilution of a sera from a SARS patient for three hours at
room temperature. After washing with PBS-Tween, the
blots were incubated with anti-human IgG-HRP conjugate
(BioRad, Hercules, CA) for one hour at room temperature.
After incubation, the blots were washed and incubated
with ECL reagent (Santa Cruz Biotechnology, Santa Cruz,
CA) for one minute and exposed to X-ray film (Kodak).

Electron Microscopy
CHO cells transfected with either the DNA vector express-
ing NC or DNA vector alone were harvested and washed
with PBS. Pellets were then fixed with 2% glutaraldehyde.
Cells were rinsed twice in 0.1 M sodium cacodylate buffer
at 4°C. The cells were then fixed with 2% Osmium Tetrox-
ide for 2 hr at 4°C. After washing with distilled water, the
cells were dehydrated with increasing concentrations of
ethanol and embedded in spur resin. Thin sections were
stained with uranyl acetate and lead citrate. The sections
were screened by using a JEOL 1010 Transmission Elec-
tron Microscope (TEM).
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Adjuvants
CpG oligodeoxynucleotide (5'-TCCATGACGTTCCT-
GACGTT-3') was provided by Coley (Ottawa, ON). Mon-
tanide ISA-51 mineral oil adjuvant was purchased from
Seppic Inc. (Paris, France). The pcDNA3 construct express-
ing 1.5 kb XIAP gene encoding an anti-apoptotic gene
product was a kind gift from Dr. R.G. Korneluk [24].

Animal Immunization
Six to eight week-old female B6/C3/F1 mice (Charles
River, St. Constant, PQ) were immunized subcutaneously
at the base of the tail with 50 µg of DNA construct express-
ing the nucleocapsid gene, 5µg of nucleocapsid protein
and 50 µl of montanide ISA-51 (Seppic)/30 µg CpG
(Coley), or 50 µg pcDNA3-XIAP at each vaccination. Each
mouse was boosted three times, at one month intervals.
Fourteen days after the last boost, the mice were sacrificed
and their spleens and blood was collected for further test-
ing or for long-term storage in cryopreservation medium.

Antibody measurement by ELISA
96 well ELISA plates were coated overnight at 4°C with
NC protein, and the wells were washed with PBS contain-
ing 0.05% Tween 20 and then blocked with 1% BSA in
PBS. Serially diluted sera was added and incubated for 2 h
at 37°C. The plates were washed and incubated for 2 h
with a 1/2000 dilution of a peroxidase-conjugated affin-
ity-purified rabbit anti-mouse secondary antibody (Bio-
Rad, Richmond, CA). The plates were washed three times
and developed with O-phenylendiamine dihydrochloride
(OPD) substrate (Sigma, St. Louis, MO). The color reac-
tion was stopped with 1N HCl and absorbance was read
at 490 nm with an ELISA plate reader (Bio-Rad).

Proliferation assay
Splenocytes from immunized mice were resuspended at 2
× 106 cells/ml in RPMI 1640 containing 10% FCS, 50 µM
β-mercaptoethanol and 100 U/ml penicillin/streptomy-
cin. A 100 µl aliquot containing 2 × 105 cells was added to
each well of a 96 well plate. The NC protein (100 µl at
20µg/ml) was added to each well in triplicate. As a posi-
tive control, cells were also stimulated with phorbol 12-
myristate 13-acetate and ionomycin (PMA/ION). After 72
h of culture, 1 µCi [3H] thymidine (Amersham, Arlington
Heights, IL) was added to each well. Following 16 h of
incubation, cells were harvested onto glass fibre filtermats
and thymidine incorporation was measured with a
Microbeta beta counter (Wallac, Turku, Finland).

Intracellular cytokine staining
Fresh blood and splenocytes from immunized mice were
cultured in IMDM media in the presence of 10 µg/ml
brefeldin A (Sigma) and stimulated in vitro with the NC
protein (10 µg/ml) expressed in bacteria. In every experi-
ment, a negative control (without stimulation), positive

control (PMA/ION) and an irrelevant protein (HIV-1
gp120 protein) was included to control for spontaneous
production of IFN-γ. Sixteen hours after incubation, the
cells were washed once (1600 rpm for 5 min) with 3 ml
PBS / 2% FCS / 0.01% Azide and surface-stained for 15
min with PE-labeled Ab to mouse CD3, TC-labeled Ab to
mouse CD8α or CD4 (Caltag Laboratories, Hornby, ON).
The cells were washed as above, fixed and permeabilized
using 100 µl each of A and B fixation-permeabilization
solution (Caltag Laboratories). The cells were stained
intracellularly with anti-mouse IFN-γ FITC-labeled Ab and
incubated for 30 min (in the dark) at 4°C. Following
washing, cells were analyzed by FACScan (Becton Dickin-
son, Mississauga, ON). An increase of 0.1% of IFN-
gamma producing cells over the unstimulated control was
considered as positive response to vaccination.

ELISPOT assay
Multiscreen-HTS plates (Millipore, Bedford, MA) were
coated with 10 µg/ml of anti-mouse IFN-γ antibody (mAb
AN18, Mabtech, Mariemont, OH) in PBS over night at
4°C. The plates were then washed with PBS and blocked
with IMDM containing 10% FCS and 100 U/ml penicil-
lin/streptomycin for 1 h at room temperature. The
medium were removed and 4 × 105 cell suspension (100
µl/well) including NC SARS protein expressed in bacteria
(10 µg/ml) or irrelevant antigens at the same concentra-
tion were added and incubated for 30 h at 37°C. After

Western blot analysis of recombinant SARS-CoV-NC proteinFigure 1
Western blot analysis of recombinant SARS-CoV-NC pro-
tein. Lane 1: purified protein from JM 109 cells transfected 
with pQE vector encoding nucleocapsid gene. Lane 2: repre-
sents cells transfected with the vector alone. The blot was 
probed with sera from a SARS patient.
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incubation, cells were removed; plates were washed with
PBS+0.05% Tween 20 and incubated with 1 µg/ml of
biotinylated anti-mouse IFN-γ antibody (mAb R4-6A2-
Biotin, Mabtech) for 2 hr at room temperature. After fur-
ther washings, 100 µl/well of 1/2000 Streptavidin-ALP-
PQ (Mabtech) in PBS+ 0.5% FCS was added and incu-
bated for 1 hr at room temperature. The plates were
washed as above and developed with 100 µl per well
BCIP/NBT alkaline phosphatase (Moss Inc) for 20 min-
utes at room temperature. The reaction was stopped with
rinsing the plates with tap water. The numbers of spots
were analyzed with an ELISPOT reader.

Statistical analysis
Results were expressed as mean ± S.D. In each experiment
four animals were used per group. The t-test was applied
for the statistical analysis of the data. The p value equal to
or less than 0.05 was considered significant.

Results
Construction of the DNA vectors and expression of SARS-
nucleocapsid protein in mammalian and bacteria cells
To increase the potency of the specific immune response,
the full-length NC was amplified by RT-PCR and ligated
into plasmid pVAX-1 under the control of the human
cytomegalovirus promoter. For the expression and purifi-
cation of the recombinant NC protein in CHO and
bacteria cells, the amplified NC gene was also sub-cloned
into pEF6-Myc/His and pQE-Tri system vectors. To
express NC protein, CHO cells and E.coli (JM109) were
transfected with pEF6 and pQE vectors encoding the NC
gene, respectively. To increase the yield of the recom-
binant protein, a stable CHO cell line was created using a
selective resistant blasticidine gene, allowing for efficient
purification of the recombinant protein. Cells were har-
vested, lysed and the recombinant proteins were purified
according to standard methods. The expression of the NC
protein in transfected cells was verified by western blot-
ting (Fig 1) and immunofluorescence staining of CHO

Production of viral-like particles shown by electron microscopyFigure 2
Production of viral-like particles shown by electron microscopy. The CHO cells were transfected with DNA-NC or vector 
alone. Arrows indicate VLPs in the transfected cell lines.
Page 4 of 10
(page number not for citation purposes)



Genetic Vaccines and Therapy 2005, 3:7 http://www.gvt-journal.com/content/3/1/7
cells infected with the vector-NC or the vector alone. Anti-
body raised in rabbits to the NC protein expressed in bac-
teria reacted strongly in the perinuclear region of the
SARS-NC-CHO cell line (data not shown).

The assembly of NC protein into virus like particles (VLPs)
The CHO cells transfected with pEF6-NC or vector alone
were examined by transmission electron microscopy. We
observed bundles of VLP of the same morphology as wild
type particles both inside and outside cells infected with
pEF6-NC. However, neither the mock-transfected cells
nor the cells transfected with the vector alone showed
viral-like particles (Fig 2). These observations demon-
strate that our construct expressing the NC protein synthe-
sised sufficient protein within infected cells to facilitate
the formation of VLPs.

Detection of antibody titer in mice immunized with the 
candidate vaccine combinations
In order to analyze the antibody titer against NC, five
groups of mice were primed and boosted with SARS-
nucleocapsid immunogen alone or in combination. Two

weeks after the last boost, sera were collected and anti-
body titer was measured by ELISA. The group received
protein and montanide/CpG showed a higher mean IgG
antibody titer compared to the group receiving vector
DNA+XIAP and DNA-NC alone. This group (NC protein
+ montanide/CpG) also showed a slightly higher anti-
body titer compared to the group received DNA-NC + NC
protein and XIAP. However, the highest SARS-CoV-spe-
cific antibody response was detected in mice immunized
with a combination of DNA-NC, protein and montanide/
CpG (Fig 3).

Combination of DNA, recombinant protein and XIAP 
induce higher level of CD8+T-cell immune responses
To assess whether vaccination with nucleocapsid increases
cell-mediated immune responses, splenocytes and fresh
blood from immunized mice was retrieved, stimulated,
and stained for surface CD4 and CD8+T cells as well as
intracellular interferon gamma. The level of IFN-γ produc-
ing CD4+ T cell in fresh blood (Fig 4) and splenocytes
(data not shown) from immunized mice did not demon-
strate a significant CD4+T cell response against the SARS-

Antibody titers were determined in mice (n = 4) two weeks after the last immunizationFigure 3
Antibody titers were determined in mice (n = 4) two weeks after the last immunization. The 96-well plates were coated with 
SARS-NC protein and mouse sera were serially diluted in wells for the endpoint titration of anti-NC antibody. Results are 
shown as mean concentration ± S.D. The symbol * indicates a significant difference (P = 0.01–000.1) compared with all other 
groups. The symbol † indicates a significant difference (P ≤ 0.001) when compared to animals immunized with DNA+XIAP and 
DNA-NC alone.
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NC protein. However, the group receiving DNA-NC,
protein and montanide/CpG demonstrated higher levels
of IFN-γ producing CD4+ T cells.

Splenocytes were also stimulated with NC protein, and
CD4 lymphocyte proliferation was performed with
tritiated thymidine. However, a high T-cell proliferation
was not detected with this assay (data not shown).

Cell-mediated immune responses were evaluated by intra-
cellular cytokine staining. The group receiving DNA-NC +
NC protein and Montanide/CpG elicited higher levels of
CD8+T-cells to nucleocapsid in comparison to groups
receiveing DNA-NC or NC protein plus adjuvant. How-
ever, the highest NC-specific CD8+T-cell response was
detected in both splenocytes (data not shown) and fresh
blood (Fig 5) in mice that received the DNA construct,
recombinant NC protein and adjuvant XIAP.

To confirm the results obtained by intracellular cytokine
staining, we performed an IFN-γ ELISPOT assay to meas-
ure NC-specific T-cell responses of splenocytes from
immunized mice. The groups DNA+XIAP, DNA-NC and
NC protein + montanide/CpG did not show a high
number of spot forming cells (SFC). Potent IFN-γ
responses were observed in mice immunized with
combination of DNA-NC+NC protein and adjuvants (Fig
6). However, following substitution of adjuvant
montanide/CpG with XIAP, SFCs were more than two
fold higher (p = 0.01). Although, IFN-γ may be produced
by both antigen-stimulated CD4+ and CD8+ T cells, most
likely the observed IFN-γ response was generated by effec-
tor CD8+ T-cells, since flow cytometry demonstrated
CD8+ T cells as the main producers of IFN-γ in this study.

SARS-CoV-NC specific CD4+ T cell responses in mice immunized with the candidate vaccinesFigure 4
SARS-CoV-NC specific CD4+ T cell responses in mice immunized with the candidate vaccines. Fresh peripheral blood cells 
were cultured, stimulated with NC protein and stained for CD4, CD3 and IFN-γ. Flow cytometry was used to analyse the NC-
specific CD4+T cell response. A negative control (without stimulation) and a positive control (phorbol myristate acetate + ion-
omycin) were included to control for the spontaneous production of IFN-γ(data not shown). Results are shown as mean ± S.D. 
The symbol † indicates a significant difference (P < 0.05) compared with the control group (DNA+XIAP).
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Discussion
The SARS epidemic is currently under control. However,
the absence of an effective therapeutic agent against this
lethal virus, compounded by the threat of its re-emer-
gence, has triggered research efforts to develop an effective
vaccine. Previous studies indicate that the spike protein is
responsible for the binding of the virus to angiotensin-
converting enzyme 2 (ACE2) [25-27]. The spike protein
contains epitopes that might elicit neutralizing antibodies
in the host species thus making it a good target for vaccine

development against SARS [28-31]. However, mutation of
this protein could affect the virulence by allowing the
virus to escape from specific immune response[32,33].
Other research groups have made efforts to develop vac-
cines based on viral nucleocapsids since these viral pro-
teins have conserved regions. Milich and McLachlan
showed that the viral nucleocapsid contains T-cell
dependent and independent epitopes. Nude (athymic)
mice immunized with HBV-nucleocapsid alone develop
high titers of IgM, IgG2a and IgG2b antibodies which are

SARS-CoV-NC specific CD8+ T cell responses in mice immunized with the candidate SARS vaccinesFigure 5
SARS-CoV-NC specific CD8+ T cell responses in mice immunized with the candidate SARS vaccines. Fresh peripheral blood 
cells from immunized mice were stimulated with various antigens and stained for CD8, CD3 and IFN-γ with labeled mono-
clonal antibodies. After staining, flow cytometry was used to analyze the NC-specific CD8+ T cells. A negative control (with-
out stimulation) and a positive control (phorbol myristate acetate + ionomycin) were included to control for the spontaneous 
production of IFN-γ. Cells were also stimulated with an irrelevant protein, HIV-1 gp120 (data not shown). A: Dot plots show 
results from individual representative animals from each group of mice. B: Results are shown as mean ± S.D. The symbol * indi-
cates a significant difference (P = 0.01–000.1) compared to all other immunized groups. The symbol † indicates a significant dif-
ference (P = 0.026) compared to the control group.
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the predominant antibodies in Th1 responses [34]. There
is evidence that the specific structure folding of viral
nucleocapsids is responsible for its high immunogenicity
[35].

The success of immunization depends on several factors,
such as type of antigen, route of administration and usage
of adjuvants. Mittal et al. showed [36] that mice immu-
nized intramuscularly, intraperitoneally or subcutane-
ously have higher antibody titers than mice immunized
orally or intranasally. In this study, mice were immunized
subcutaneously as this route of administration has been
used successfully in the past [37-39].

We promoted the immune responses with adjuvants
montanide ISA-51/CpG or XIAP. Montanide is a mineral
oil based adjuvant that increases the immune response
non-specifically[40,41]. It has been tested in clinical trials
and it has a good reactogenicity profile, making it an ideal
adjuvant for human use. [42-44]. In an HIV vaccine

candidate study, we showed that montanide can induce
strong antibody titers against HIV-1 structural genes
(gp120, gag and pol). CpG is also among the most fre-
quently used experimental adjuvants; this adjuvant stim-
ulates dendritic cells through Toll-like receptor 9 (TLR9),
inducing cell maturation and enhancing antigen presenta-
tion and Th1 responses. [45-47]. The combination of
montanide and CpG was investigated in light of a recent
study demonstrating that this combination is more effec-
tive than the use of any of the adjuvants alone [48]. A
group of mice received XIAP as adjuvant based on the
finding by Kim et al. that mice immunized with DNA
encoding XIAP exhibit a strong cell mediated immune
response against melanoma. Kim et al. hypothesize that
this strong response may be due to increased survival of
dendritic cells or T cells in vivo [16,17].

Nucleocapsid has a fundamental role in the viral life-cycle
and could be a potential target for enhancing the immune
responses. It is also of interest as a particulate carrier for

The number of IFN-γ producing cells was measured by an ELISPOT assayFigure 6
The number of IFN-γ producing cells was measured by an ELISPOT assay. The plates were coated with an anti-mouse IFN-γ 
antibody. The cells were cultured in the presence of recombinant NC protein or an irrelevant antigen (gp120 protein). NC-
specific IFN-γ were detected as described in Materials and Methods. The mean ± S.D. is shown for each group. The symbol * 
indicates a significant difference (P = 0.01–0.001) between the indicated group and all other immunized groups. The symbol † 
indicates a significant difference (P < 0.05) between the indicated group and the control group (DNA+XIAP).
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conserved CD8+T-cell epitopes that might be suitable for
the development of an effective vaccine for SARS-CoV.

In order to characterize specific immune responses in our
candidate SARS vaccines, we used a recombinant protein
expressed in bacteria for in vitro assays to detect CD4+
and CD8+T-cell responses, while the vaccine candidates
contained a recombinant protein expressed in CHO cells.
Ideally, peptides are used to stimulate CD8+effector
responses, however, this is not yet feasible since NC CTL
epitopes are not yet characterized in this strain of mice. It
is likely that VLPs are processed by antigen presenting cells
and the epitopes presented in an MHC I context, as
suggested by the increased CD8+ T-cell responses
observed post-vaccination.

Several studies have assessed the SARS-CoV-NC protein as
a candidate vaccine. For instance, Wang et al. [49] showed
a low proliferative response to NC in BALB/c mice that
receive a DNA vector expressing NC protein. A weak
CD4+T cell response was also observed in our study. Two
more studies analyzed humoral and cell-mediated
immune responses in mice immunized with DNA vac-
cines expressing NC [50,51]. Kim at al. showed that link-
age of NC protein to calreticulin increased humoral and
cellular immune responses in vaccinated mice compared
to mice receiving DNA-NC alone. We did not detect a high
level of CD8+ T cell immune response in mice immunized
with DNA-NC or NC protein alone. However, the
immunogenicity of our candidate DNA vaccine encoding
NC was improved with the co-administration of the
recombinant nucleocapsid protein and adjuvants.

Zhu et al. show a high level of antibody titer in mice after
three injections of DNA-NC. Surprisingly, we did not
detect a high level of antibody titer in mice immunized
with DNA-NC alone.

In summary, our results indicate that immunization with
different adjuvants could influence the type of immune
response. Mice that received DNA, protein and monta-
nide/CpG showed a high level of specific antibody titer
against NC. However, vaccination with combinations of
DNA-NC, recombinant NC protein and XIAP may add
breadth to cell-mediated immune responses. These results
suggest a novel approach to produce an effective vaccine
against SARS infection.

Abbreviations
XIAP: X-linked inhibitor of apoptosis.

NC: Nucleocapsid

Acknowledgements
We thank the personnel in the animal facility at University of Ottawa for 
their assistance. We are grateful to Drs. Katrina Gee and Neera Malik for 
critically reading the manuscript.

References
1. Buchholz UJ, Bukreyev A, Yang L, et al.: Contributions of the

structural proteins of severe acute respiratory syndrome
coronavirus to protective immunity.  Proc Natl Acad Sci USA
2004, 101(26):9804-9.

2. Spiga O, Bernini A, Ciutti A, et al.: Molecular modelling of S1 and
S2 subunits of SARS coronavirus spike glycoprotein.  Biochem
Biophys Res Commun 2003, 310(1):78-83.

3. Lu H, Zhao Y, Zhang J, et al.: Date of origin of the SARS corona-
virus strains.  BMC Infect Dis 2004, 4(1):3.

4. Egloff MP, Ferron F, Campanacci V, et al.: The severe acute respi-
ratory syndrome-coronavirus replicative protein nsp9 is a
single-stranded RNA-binding subunit unique in the RNA
virus world.  Proc Natl Acad Sci USA 2004, 101(11):3792-6.

5. He R, Leeson A, Ballantine M, et al.: Characterization of protein-
protein interactions between the nucleocapsid protein and
membrane protein of the SARS coronavirus.  Virus Res 2004,
105(2):121-5.

6. Surjit M, Liu B, Kumar P, Chow VT, Lal SK: The nucleocapsid pro-
tein of the SARS coronavirus is capable of self-association
through a C-terminal 209 amino acid interaction domain.
Biochem Biophys Res Commun 2004, 317(4):1030-6.

7. Wege H, Schliephake A, Korner H, Flory E, Wege H: An immuno-
dominant CD4+ T cell site on the nucleocapsid protein of
murine coronavirus contributes to protection against
encephalomyelitis.  J Gen Virol 1993, 74(Pt 7):1287-94.

8. Wege H, Schliephake A, Korner H, Flory E, Wege H: An immuno-
dominant CD4+ T cell site on the nucleocapsid protein of
murine coronavirus contributes to protection against
encephalomyelitis.  J Gen Virol 1993, 74(Pt 7):1287-94.

9. Wege H, Schliephake A, Korner H, Flory E, Wege H: Coronavirus
induced encephalomyelitis: an immunodominant CD4(+)-T
cell site on the nucleocapsid protein contributes to
protection.  Adv Exp Med Biol 1993, 342:413-8.

10. Boots AM, Benaissa-Trouw BJ, Hesselink W, Rijke E, Schrier C,
Hensen EJ: Induction of anti-viral immune responses by
immunization with recombinant-DNA encoded avian coro-
navirus nucleocapsid protein.  Vaccine 1992, 10(2):119-24.

11. Young KR, Smith JM, Ross TM: Characterization of a DNA vac-
cine expressing a human immunodeficiency virus-like
particle.  Virology 2004, 327(2):262-72.

12. Doan LX, Li M, Chen C, Yao Q: Virus-like particles as HIV-1
vaccines.  Rev Med Virol 2004.

13. Takamura S, Niikura M, Li TC, et al.: DNA vaccine-encapsulated
virus-like particles derived from an orally transmissible virus
stimulate mucosal and systemic immune responses by oral
administration.  Gene Ther 2004, 11(7):628-35.

14. Pachuk CJ, McCallus DE, Weiner DB, Satishchandran C: DNA vac-
cines–challenges in delivery.  Curr Opin Mol Ther 2000,
2(2):188-98.

15. Davis HL, McCluskie MJ: DNA vaccines for viral diseases.
Microbes Infect 1999, 1(1):7-21.

16. Kim TW, Hung CF, Ling M, et al.: Enhancing DNA vaccine
potency by coadministration of DNA encoding antiapoptotic
proteins.  J Clin Invest 2003, 112(1):109-17.

17. Kim TW, Hung CF, Zheng M, et al.: A DNA vaccine co-expressing
antigen and an anti-apoptotic molecule further enhances the
antigen-specific CD8+ T-cell immune response.  J Biomed Sci
2004, 11(4):493-9.

18. Benito JM, Lopez M, Soriano V: The role of CD8+ T-cell response
in HIV infection.  AIDS Rev 2004, 6(2):79-88.

19. Gulzar N, Copeland KF: CD8+ T-cells: function and response to
HIV infection.  Curr HIV Res 2004, 2(1):23-37.

20. Zhu F, Eckels DD: Functionally distinct helper T-cell epitopes
of HCV and their role in modulation of NS3-specific, CD8+/
tetramer positive CTL.  Hum Immunol 2002, 63(9):710-8.

21. Noble A, Leggat JA, Inderberg EM: CD8+ immunoregulatory cells
in the graft-versus-host reaction: CD8 T cells activate den-
dritic cells to secrete interleukin-12/interleukin-18 and
Page 9 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15210961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15210961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15210961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14511651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14511651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15028113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15028113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15007178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15007178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15007178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15351485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15351485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15351485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15094372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15094372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8393072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8393072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8393072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8393072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8393072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8393072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7911644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7911644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7911644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1311490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1311490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1311490
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15351214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15351214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15351214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11249641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11249641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10594972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12840065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12840065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12840065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15153784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15153784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15153784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15332430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15332430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15053338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15053338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12175725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12175725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12175725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12871213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12871213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12871213


Genetic Vaccines and Therapy 2005, 3:7 http://www.gvt-journal.com/content/3/1/7
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

induce T helper 1 autoantibody.  Immunology 2003,
109(4):476-86.

22. Renner C, Held G, Ohnesorge S, et al.: Role of perforin,
granzymes and the proliferative state of the target cells in
apoptosis and necrosis mediated by bispecific-antibody-acti-
vated cytotoxic T cells.  Cancer Immunol Immunother 1997,
44(2):70-6.

23. Pham CT, Ley TJ: The role of granzyme B cluster proteases in
cell-mediated cytotoxicity.  Semin Immunol 1997, 9(2):127-33.

24. Vitte-Mony I, Korneluk RG, Diaz-Mitoma F: Role of XIAP protein,
a human member of the inhibitor of apoptosis (IAP) protein
family, in phytohemagglutinin-induced apoptosis of human T
cell lines.  Apoptosis 1997, 2(6):501-9.

25. Prabakaran P, Xiao X, Dimitrov DS: A model of the ACE2 struc-
ture and function as a SARS-CoV receptor.  Biochem Biophys Res
Commun 2004, 314(1):235-41.

26. Xiao X, Chakraborti S, Dimitrov AS, Gramatikoff K, Dimitrov DS:
The SARS-CoV S glycoprotein: expression and functional
characterization.  Biochem Biophys Res Commun 2003,
312(4):1159-64.

27. Li W, Moore MJ, Vasilieva N, et al.: Angiotensin-converting
enzyme 2 is a functional receptor for the SARS coronavirus.
Nature 2003, 426(6965):450-4.

28. He Y, Zhou Y, Liu S, et al.: Receptor-binding domain of SARS-
CoV spike protein induces highly potent neutralizing anti-
bodies: implication for developing subunit vaccine.  Biochem
Biophys Res Commun 2004, 324(2):773-81.

29. Han DP, Kim HG, Kim YB, Poon LL, Cho MW: Development of a
safe neutralization assay for SARS-CoV and characterization
of S-glycoprotein.  Virology 2004, 326(1):140-9.

30. Zhang H, Wang G, Li J, et al.: Identification of an antigenic deter-
minant on the S2 domain of the severe acute respiratory
syndrome coronavirus spike glycoprotein capable of induc-
ing neutralizing antibodies.  J Virol 2004, 78(13):6938-45.

31. Yang ZY, Kong WP, Huang Y, et al.: A DNA vaccine induces SARS
coronavirus neutralization and protective immunity in mice.
Nature 2004, 428(6982):561-4.

32. Yoo D, Deregt D: A single amino acid change within antigenic
domain II of the spike protein of bovine coronavirus confers
resistance to virus neutralization.  Clin Diagn Lab Immunol 2001,
8(2):297-302.

33. Wang L, Xu Y, Collisson EW: Experimental confirmation of
recombination upstream of the S1 hypervariable region of
infectious bronchitis virus.  Virus Res 1997, 49(2):139-45.

34. Milich DR, McLachlan A, Moriarty A, Thornton GB: Immune
response to hepatitis B virus core antigen (HBcAg): localiza-
tion of T cell recognition sites within HBcAg/HBeAg.  J
Immunol 1987, 139(4):1223-31.

35. Noad R, Roy P: Virus-like particles as immunogens.  Trends
Microbiol 2003, 11(9):438-44.

36. Mittal SK, Aggarwal N, Sailaja G, et al.: Immunization with DNA,
adenovirus or both in biodegradable alginate microspheres:
effect of route of inoculation on immune response.  Vaccine
2000, 19(2–3):253-63.

37. Tobiasch E, Kehm R, Bahr U, et al.: Large envelope glycoprotein
and nucleocapsid protein of equine arteritis virus (EAV)
induce an immune response in Balb/c mice by DNA vaccina-
tion; strategy for developing a DNA-vaccine against EAV-
infection.  Virus Genes 2001, 22(2):187-99.

38. Du DW, Jia ZS, Li GY, Zhou YY: HBV DNA vaccine with adju-
vant cytokines induced specific immune responses against
HBV infection.  World J Gastroenterol 2003, 9(1):108-11.

39. Cui Z, Mumper RJ: The effect of co-administration of adjuvants
with a nanoparticle-based genetic vaccine delivery system
on the resulting immune responses.  Eur J Pharm Biopharm 2003,
55(1):11-8.

40. Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V: Montanide
ISA 720 and 51: a new generation of water in oil emulsions
as adjuvants for human vaccines.  Expert Rev Vaccines 2002,
1(1):111-8.

41. Sanderson K, Scotland R, Lee P, et al.: Autoimmunity in a phase I
trial of a fully human anti-cytotoxic T-lymphocyte antigen-4
monoclonal antibody with multiple melanoma peptides and
Montanide ISA 51 for patients with resected stages III and IV
melanoma.  J Clin Oncol 2005, 23(4):741-50.

42. Peter K, Men Y, Pantaleo G, Gander B, Corradin G: Induction of a
cytotoxic T-cell response to HIV-1 proteins with short syn-
thetic peptides and human compatible adjuvants.  Vaccine
2001, 19(30):4121-9.

43. Lawrence GW, Saul A, Giddy AJ, Kemp R, Pye D: Phase I trial in
humans of an oil-based adjuvant SEPPIC MONTANIDE ISA
720.  Vaccine 1997, 15(2):176-8.

44. Barnett PV, Pullen L, Williams L, Doel TR: International bank for
foot-and-mouth disease vaccine: assessment of Montanide
ISA 25 and ISA 206, two commercially available oil
adjuvants.  Vaccine 1996, 14(13):1187-98.

45. Jiao X, Wang RY, Qiu Q, Alter HJ, Shih JW: Enhanced hepatitis C
virus NS3 specific Th1 immune responses induced by co-
delivery of protein antigen and CpG with cationic liposomes.
J Gen Virol 2004, 85(Pt 6):1545-53.

46. Lin L, Gerth AJ, Peng SL: CpG DNA redirects class-switching
towards "Th1-like" Ig isotype production via TLR9 and
MyD88.  Eur J Immunol 2004, 34(5):1483-7.

47. Zhang Y, Palmer GH, Abbott JR, Howard CJ, Hope JC, Brown WC:
CpG ODN 2006 and IL-12 are comparable for priming Th1
lymphocyte and IgG responses in cattle immunized with a
rickettsial outer membrane protein in alum.  Vaccine 2003,
21(23):3307-18.

48. Kumar S, Jones TR, Oakley MS, et al.: CpG oligodeoxynucleotide
and Montanide ISA 51 adjuvant combination enhanced the
protective efficacy of a subunit malaria vaccine.  Infect Immun
2004, 72(2):949-57.

49. Wang Z, Yuan Z, Matsumoto M, Hengge UR, Chang YF: Immune
responses with DNA vaccines encoded different gene frag-
ments of severe acute respiratory syndrome coronavirus in
BALB/c mice.  Biochem Biophys Res Commun 2005, 327(1):130-5.

50. Kim TW, Lee JH, Hung CF, et al.: Generation and characteriza-
tion of DNA vaccines targeting the nucleocapsid protein of
severe acute respiratory syndrome coronavirus.  J Virol 2004,
78(9):4638-45.

51. Zhu MS, Pan Y, Chen HQ, et al.: Induction of SARS-nucleopro-
tein-specific immune response by use of DNA vaccine.  Immu-
nol Lett 2004, 92(3):237-43.
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12871213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9177467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9177467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9177467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9194223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9194223
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14646521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14646521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14646521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14715271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14715271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14651994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14651994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14651994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14647384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14647384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15474494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15474494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15474494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15262502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15194770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15194770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15194770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15024391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15024391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9213388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9213388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9213388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2440947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2440947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2440947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13678860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10930680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10930680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10930680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11324756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11324756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11324756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12508362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12508362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12508362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12551699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12551699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12551699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12908518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12908518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12908518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15613700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15613700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15613700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11457536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11457536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11457536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9066035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9066035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9066035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8961504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8961504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8961504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15166438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15166438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15114682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15114682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15114682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12804862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12804862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12804862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14742540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14742540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14742540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15629440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15629440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15629440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15078946
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15081618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15081618
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Introduction
	Materials and methods
	Cell culture
	Construction of DNA plasmids
	Expression of recombinant nucleocapsid protein
	Electron Microscopy
	Adjuvants
	Animal Immunization
	Antibody measurement by ELISA
	Proliferation assay
	Intracellular cytokine staining
	ELISPOT assay
	Statistical analysis

	Results
	Construction of the DNA vectors and expression of SARS- nucleocapsid protein in mammalian and bacteria cells
	The assembly of NC protein into virus like particles (VLPs)
	Detection of antibody titer in mice immunized with the candidate vaccine combinations
	Combination of DNA, recombinant protein and XIAP induce higher level of CD8+T-cell immune responses

	Discussion
	Abbreviations
	Acknowledgements
	References

