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Abstract
Background: Vascular endothelial growth factor (VEGF) and its receptor, VEGFR-2 (Flk-1/KDR),
play a key role in tumor angiogenesis. Blocking the VEGF-VEGFR-2 pathway may inhibit tumor
growth. Here, we used human VEGFR-2 as a model antigen to explore the feasibility of
immunotherapy with a plasmid DNA vaccine based on a xenogeneic homologue of this receptor.

Methods: The protective effects and therapeutic anti-tumor immunity mediated by the DNA
vaccine were investigated in mouse models. Anti-angiogenesis effects were detected by
immunohistochemical staining and the alginate-encapsulate tumor cell assay. The mechanism of
action of the DNA vaccine was primarily explored by detection of auto-antibodies and CTL activity.

Results: The DNA  vaccine  elicited  a  strong, protective and therapeutic  anti-tumor  immunity
through  an anti-angiogenesis mechanism  in mouse models, mediated  by  the  stimulation of an
antigen-specific response against mFlk-1.

Conclusion: Our study shows that a DNA vaccine based on a xenogeneic homologue plasmid
DNA induced autoimmunity against VEGFR-2, resulting in inhibition of tumor growth. Such
vaccines may be clinically relevant for cancer immunotherapy.

Background
Angiogenesis plays an important role in the growth, inva-
sion and metastasis of most solid tumors [1-3]. Vascular
endothelial growth factor (VEGF) and its receptor,
VEGFR-2 (Flk-1/KDR), play a key role in tumor angiogen-
esis[4]. VEGFR-2 has a strong tyrosine kinase activity and
mediates the transduction of major signals for angiogen-
esis[5]. Blocking the VEGF-VEGFR-2 pathway may inhibit
tumor growth.

It is possible that breaking the immune tolerance to
VEGFR-2 (Flk-1) on autologous angiogenic endothelial

cells may enable tumor therapy through active immunity.
However, immunity to angiogenic vessels is difficult to
elicit with a vaccine based on autologous molecules
because of the immune tolerance acquired during the
early development of the immune system. Many genes
have been highly conserved during the evolutionary proc-
ess, which is evident from the degree of gene similarity
among different species[6]. Sequence comparison using
the SwissProt database indicates that the primary
sequence of murine VEGFR-2 (Flk-1) is 85% identical to
the human receptor (KDR) sequence at the amino acid
level. Here, we investigate the feasibility of cancer immu-
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notherapy using a vaccine based on a xenogeneic homo-
logue of VEGFR-2 as a model antigen to break the
immune tolerance against VEGFR-2 through a cross-reac-
tion between the xenogeneic homologue and the self-
molecule.

Anti-cancer vaccines have been extensively studied in ani-
mal models and clinical trials. Anti-cancer vaccine strate-
gies have included immunization with whole-tumor cell
vaccines, peptide vaccines, dendritic cell (DC) vaccines,
viral vector vaccines, vaccines combined with adoptive T-
cell therapy, and plasmid DNA vaccines[7]. Plasmid DNA
vaccines are attractive because they are relatively easy to

engineer and produce, and are safe to administer to
humans [8-10]. A number of studies have reported the use
of plasmid DNA-based vaccines for eliciting anti-tumor
immunity in mice [11-14].

The current generation of plasmid DNA-based cancer vac-
cines may fail to elicit effective anti-tumor immunity
because they do not trigger sufficient systemic activation
of innate immunity. Complexing cationic liposomes to
the plasmid DNA offers a relatively simple means of
accomplishing this, as some researchers have shown that
liposome-DNA complexes (LDCs) are extremely potent
activators of innate immunity [14-16].

Induction of therapeutic anti-tumor immunityFigure 1
Induction of therapeutic anti-tumor immunity. Mice (five per group in both the CT26 and 4T1 tumor models) were 
treated i.v. once a week for 6 weeks with 20 μg of pORF-hFlk-1 LDC, pORF-mFlk-1 LDC, pORF-mcs LDC alone or GS. Treat-
ment was started 13 days after 2 × 105 CT26 cells were subcutaneously administered to the mice, (A, C) or 4 days after they 
received 8 × 105 4T1 tumor cells (B, D). Data are expressed as means ± SEM. A significant increase in survival in human 
VEGFR-2 LDC-treated mice, compared with the control groups (P < 0.01, by log-rank test), was found in both tumor models.
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Induction of protective anti-tumor immunityFigure 2
Induction of protective anti-tumor immunity. Mice (five per group) were immunized with 20 μg of pORF-hFlk-1 LDC, 
pORF-mFlk-1 LDC, pORF-mcs LDC or GS once a week for 6 weeks. Mice were then challenged subcutaneously with 2 × 105 

CT26(A, C) tumor cells, or 8 × 105 4T1 tumor cells(B, D), 1 week after the sixth immunization. There was an apparent differ-
ence in tumor volume between human VEGFR-2 LDC-immunized and control groups. Results are expressed as means ± SEM.
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Here, we immunized tumor-bearing mice with human
VEGFR-2 LDC vaccines to test their ability to induce anti-
tumor immunity. We demonstrated that human VEGFR-2
LDC immunization elicited enhanced anticancer activity
in these mice. The human DNA vaccine mediated its effect
by impairing the formation of new tumor blood vessels
through an anti-angiogenesis mechanism. The human
VEGFR-2 DNA vaccine was well tolerated by all mice.

Methods
Plasmid construction and preparation of plasmid DNA
We constructed the expression vectors, pORF-Flk-1, by
inserting the cDNAs encoding extracellular human or
murine Flk-1 into the pORF-mcs between the NcoI (5')
and NheI (3') restriction sites. These constructs were veri-
fied by nucleotide sequencing, and by protein expression
on western blots following transient transfection into
COS-7 cells. Large-scale plasmid DNA preparation was
performed using an EndoFree™ Plasmid Giga kit (Qiagen,
Chatsworth, CA).

Animals and cell lines
BALB/c mice were purchased from the West China Exper-
imental Animal Center. Murine breast carcinoma cell line

4T1, colon carcinoma cell line CT26 and endothelial cell
line MS1 were purchased from the American Type Culture
Collection. The MS1, COS-7 and breast carcinoma 4T1
cell lines were cultured in DMEM, and the colon carci-
noma CT26 cell line was cultured in RPMI 1640, each sup-
plemented with 10% (v/v) fetal bovine serum.

Animal protocols for these experiments were approved by
the West China Hospital Cancer Center's Animal Care and
Use Committee at the National Jewish Medical and
Research Center.

Preparation of liposome-DNA complexes
The cationic lipid DOTAP was mixed with the neutral
lipid cholesterol at equimolar concentrations. The mixed
powdered lipids were dissolved in AP-grade chloroform in
a 100-ml round-bottomed flask, rotated on a Buchi rotary
evaporator at 30°C for 30 min to make a thin film, then
dried under vacuum for 15 min. The film was hydrated in
5% dextrose in water (D5W) to give a final concentration
of 13 mM DOTAP and 13 mM cholesterol, referred to as
13 mM DOTAP:chol. The hydrated lipid film was rotated
in a water bath at 50°C for 45 min and then 35°C for 10
min. The mixture was allowed to stand in the parafilm-

Protection against pulmonary metastasesFigure 3
Protection against pulmonary metastases. BALB/c mice (4T1 tumor model) were treated i.v. once a week for 6 weeks 
with 20 μg LDC beginning 4 days after subcutaneous challenge with 8 × 105 4T1 tumor cells. Top(A): representative lung met-
astatic nodule specimens from mice challenged with 4T1 breast tumor cells; bottom(B): average numbers of lung metastatic 
nodules. The lungs from pORF-hFlk-1-treated mice showed significant differences compared with other groups (P < 0.05 or P 
< 0.01). Columns: mean lung metastatic nodules (n = 5); bars: SD.
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covered flask at room temperature overnight, after which
the mixture was sonicated at low frequency (Lab-line,
TransSonic 820/H) for 5 min at 50°C, transferred to a
tube, and heated for 10 min at 50°C. The mixture was
sequentially extruded through Millipore (Billerica, MA)
polycarbonate membranes of decreasing size (0.2 μm for
5 times and then 0.1 μm for 3 times) using a syringe. Lipo-
some-DNA complexes (LDCs) were formed just before
injection by gently mixing cationic liposomes with plas-
mid DNA at a ratio of 1:3 (w/w) in 5% aqueous dextrose
at room temperature. The DNA:liposome mixture thus
prepared was precipitate free and used for all the in vivo
experiments. The size of the DNA fragments in the
DNA:liposome mixture was determined to be in the range
of 300–325 nm. (The preparation of liposome DNA com-
plexes was supported by The Chemical Laboratories of the
State Key Laboratory for Biotherapy).

Therapeutic anti-tumor immunity and tumor models
Experiments with CT26 and 4T1 tumors were carried out
in female BALB/c mice, 6–8 weeks of age. Tumors were
established by sub-cutaneous (s.c.) injection of 2 × 105

CT26 tumor cells or 8 × 105 4T1 tumor cells in the right

flank. Treatments were initiated 13 days post-tumor inoc-
ulation (CT26 colon carcinoma model) or 4 days post-
tumor inoculation (4T1 breast tumor model), at a time
when tumor nodules were palpable. Tumor dimensions
were measured every 3 days using calipers, and volumes
were calculated according to the following formula:
width2 × length × 0.52. The lung metastatic nodules were
counted using a dissecting microscope[17]. Mice were
immunized with 20 μg per injection per mouse of pORF-
hFlk-1 LDC, pORF-mFlk-1 LDC, pORF-mcs LDC alone or
with 5% dextrose (GS)[18]. Intravenous (i.v.) injections
were performed once a week for 6 weeks. Due to the death
of mice, the tumor volumes on day 28 (CT26 tumors) and
day 34 (4T1 tumors) in the control groups only came
from the surviving mice.

Protective anti-tumor immunity and tumor models
At 6–8 weeks of age, female BALB/c mice were immunized
with 20 μg per injection per mouse of pORF-hFlk-1 LDC,
pORF-mFlk-1 LDC, pORF-mcs LDC alone or GS. Injec-
tions were performed by i.v. routes once a week for 6
weeks. Seven days after the last immunization, the mice
were challenged with 2 × 105 CT26 tumor cells or 8 × 105

4T1 tumor cells by s.c. injection in the right flank.

ELISA
96-well plates were coated with cell lysates (100 μL/well)
in coating buffer (carbonate-bicarbonate, pH 9.6) over-
night at 4°C. Plates were washed with PBST (0.05%
Tween 20 in PBS) and blocked for 1 hour at 37°C with
100 μL/well of 1% bovine serum albumin (BSA) in PBST.
Mice sera collected at 0, 2nd, 4th, 6th weeks immuniza-
tion, diluted serially in PBS were added for 2 hours at
37°C, washed and followed by a dilution of anti-mouse
secondary antibody conjugated to horseradish peroxi-
dase. Enzyme activity was measured with an enzyme-
linked immunosorbent assay (ELISA) reader (Bio-Rad
Laboratories, Hercules, CA).

Western blot analysis
Western blot analysis was performed as described[19,20].
Briefly, lysates of cells were separated by SDS-PAGE and
gels were transferred onto PVDF membranes by electrob-
lotting. The membranes were blocked in 5% (w/v) nonfat
dry milk, washed, and probed with mouse sera at 1:200.
Blots were then washed and incubated with an HRP-con-
jugated secondary antibody (1:6000–10,000), and visual-
ized with chemiluminescence reagents.

Immunohistochemistry
To explore whether the anti-tumor immunity involved the
inhibition of angiogenesis, vessel density in the tumor tis-
sue, and angiogenesis in vivo, were determined as
described previously[18]. Frozen sections were used to
determine vessel density with an anti-CD31 antibody.

Characterization of the auto-antibodiesFigure 4
Characterization of the auto-antibodies. Western blot-
ting(A) and ELISA(B) showed that the VEGFR-2 protein was 
recognized by the sera isolated from mice immunized with 
human VEGFR-2 LDC, but not control sera. Lane 1 = posi-
tive control. Lanes 2–5 = samples obtained prior to immuni-
zation. Lanes 6–9 = samples obtained after immunization.(2,6 
= pORF-hFlk-1 LDC; 3,7 = pORF-mFlk-1 LDC; 4,8 = pORF-
mcs LDC; 5,9 = GS)

1     2    3     4     5     6    7     8     9

0               2               4                 6
0

0.5

1

1.5

2

2.5

3

weeks after immunization

A
4

0
5

 pORF-hFlk-1 LDC

pORF-mFlk-1LDC

pORF-mcs-LDC

GS

A

B

VEGFR-2
Page 5 of 10
(page number not for citation purposes)



Genetic Vaccines and Therapy 2009, 7:10 http://www.gvt-journal.com/content/7/1/10
Alginate-encapsulate tumor cell assay
Mice were immunized as above. Alginate beads contain-
ing 1 × 105 tumor cells (CT26 tumor cells) per bead were
implanted s.c. into both dorsal sides of the immunized
mice. After 12 days, the mice were injected i.v. with 0.1 ml
of a 100 mg/kg FITC-dextran (Sigma) solution. Twenty
minutes after FITC-dextran injection, alginate beads were
photographed after being exposed surgically and then rap-
idly removed. The uptake of FITC-dextran was measured
as described[18,21].

CTL assays
The possibility that hFlk-1-specific cytotoxicity was medi-
ated by cytotoxic T lymphocytes (CTLs) was determined
by a 51Cr release assay as described previously[22,23].
Briefly, BALB/c mice were immunized with 20 μg DNA as

described above. Spleens were collected on day 7 after the
last vaccination. T lymphocytes were isolated from single-
cell suspensions with using a Nylon Fiber Column T (L-
Type, WAKO) to use as CTL effector cells; MS1 murine
endothelial cells, which express mFlk-1[24], were used as
target cells. Effector and target cells were seeded into a 96-
well microtiter plate at various effector/target ratios. The
CTL activity was calculated by the following formula:
%lysis = [(experimental release - spontaneous release)/
(maximum release - spontaneous release)] × 100.

Evaluation of possible adverse effects
Potential toxic effects of the vaccines in immunized mice
were investigated for more than 5 months. Gross meas-
ures such as weight loss, ruffling of fur, life span, behavior,
and feeding were investigated. Tissues from the major

Inhibition of angiogenesis within tumorsFigure 5
Inhibition of angiogenesis within tumors. BALB/c mice were immunized with pORF-hFlk-1 LDC, pORF-mFlk-1 LDC, 
pORF-mcs LDC or GS once a week for 6 weeks. The mice were then inoculated with 2 × 105 CT26 tumor cells. Frozen sec-
tions of tumor tissue were tested by immunohistochemical analysis with anti-CD31 antibody (A-D). Vessel density in tumor 
tissues from human VEGFR-2 LDC immunized mice indicated a significant decrease compared with controls (I; P < 0.01). Col-
umns: means; bars: SD. Vascularization of alginate implants. Mice were immunized as above and alginate beads containing 1 × 
105 CT26 tumor cells per bead were then implanted s.c. into the backs of mice 7 days after the last immunization. Beads were 
surgically removed 12 days later (E-H), and FITC-dextran was quantified (J). Bead uptake in mice immunized with human 
VEGFR-2 LDC showed a significant decrease compared with controls (P < 0.01). Columns: means; bars: SD.
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organs (heart, liver, spleen, lung, kidney, ovary and so on)
were fixed in a 10% neutral buffered formalin solution,
embedded in paraffin and 3 to 5 μm sections were stained
with hematoxylin and eosin (H&E). Animals were sub-
jected to complete peripheral blood counts and differen-
tials, and biochemical tests.

Statistical analysis
Survival curves were generated by the log-rank test. The
statistical significance of results in all of the experiments
was determined by Student's t test and ANOVA. P value <
0.05 was considered statistically significant.

Results
Induction of therapeutic and protective anti-tumor 
immunity
To explore the therapeutic efficacy of human VEGFR-2
LDC, we treated mice either 13 days (CT26 tumors) or 4
days (4T1 tumors) after the implantation of tumor cells,
when the tumors were palpable. Treatment with human
VEGFR-2 LDC once weekly resulted in significant anti-
tumor activity in both the CT26 colon carcinoma (CT26)
and 4T1 breast tumor (4T1) models. Survival of the
tumor-bearing mice treated with human VEGFR-2 LDC
was also greater than that of the controls (Figure 1).

Mice were immunized i.v. once a week for 6 weeks with
human VEGFR-2 LDC (pORF-hFlk-1 LDC), and then were
challenged with 2 × 105 CT26 tumor cells or 8 × 105 4T1

tumor cells. Controls included mice that were not vacci-
nated (GS), and mice immunized i.v. with LDC contain-
ing either non-coding plasmid DNA or mouse VEGFR-2
DNA (pORF-mcs LDC alone or pORF-mFlk-1 LDC).
Tumors grew progressively in all non-immunized mice
and in mice immunized with pORF-mFlk-1 LDC or
pORF-mcs LDC alone, but there was an apparent protec-
tion from tumor growth in mice immunized with pORF-
hFlk-1 LDC (Figure 2).

We observed a marked reduction in the dissemination of
pulmonary metastases in all experimental animals follow-
ing six immunizations with human VEGFR-2 LDC in the
4T1 breast tumor model (Figure 3).

To explore the possible mechanism by which the antican-
cer activity was induced by human VEGFR-2 LDC, we
identified auto-antibodies against Flk-1 in the immunized
mice. Sera from human VEGFR-2 LDC-immunized mice
recognized VEGFR-2 protein on Western blots and by
ELISA following immunization (Figure 4). In contrast, the
sera isolated from controls showed negative staining.

Inhibition of angiogenesis
Vaccination with human VEGFR-2 LDC resulted in the
apparent inhibition of angiogenesis in tumors (Figure 5A)
compared with control groups (Figure 5B–D). The
number of microvessels also showed a significant decrease
in sections stained with an antibody reactive to CD31
(Figure 5I). In addition, inhibition of angiogenesis could
also be detected in the alginate-encapsulate tumor cell
assay. Angiogenesis in alginate implants was quantified
by measuring the uptake of FITC-dextran into the beads.
Vascularization of alginate beads was apparently reduced,
and FITC-dextran uptake was significantly decreased in
human VEGFR2 LDC-immunized mice when compared
with controls (Figure 5E–J). These results suggested that
tumor angiogenesis was inhibited in human VEGFR-2
LDC-immunized mice, which resulted in the suppression
of tumor growth.

Assay of CTL-mediated cytotoxicity
Specific CTL activity was assayed by 51Cr release. These
assays showed that T lymphocytes from the mice immu-
nized with human VEGFR-2 LDC were more cytotoxic to
hFlk-1+ MS1 cells than control groups (Figure 6). These
findings indicate that both humoral and cellular immu-
nity were mediated against hFlk-1.

Observations of potential toxicity
Vaccinated mice without tumors were investigated for
more than 5 months for potential toxicity caused by the
injected DNA. Spleen enlargement was observed in most
mice, but no pathological changes to the liver, kidney,
heart or ovary were found. No adverse consequences were
indicated in gross measures such as weight loss, ruffling of

CTL-mediated cytotoxicity in vitroFigure 6
CTL-mediated cytotoxicity in vitro. T lymphocytes 
from mice immunized with pORF-hFlk-1 LDC, pORF-mFlk-1 
LDC, pORF-mcs LDC or GS were tested against murine MS1 
cells at different effector/target ratios by 51Cr release assay. 
T cells isolated from mice immunized with pORF-hFlk-1 LDC 
showed increased cytotoxicity against Flk-1-positive target 
MS1 cells (P < 0.05). Points: means of triplicate samples from 
one representative experiment; bars: SE.
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fur, life span, behavior or feeding in the mice. No other
pathological changes to the liver, kidney, heart or ovary
were found by microscopic examination of tumor-bearing
mice over a period of more than 5 months, but weight
loss, ruffling of fur, behavior or feeding were changed
(Figure 7). Only mild changes in peripheral blood counts
and differentials were observed following the immuniza-
tions, while biochemical tests were normal (data not
shown).

Discussion
Immunization with LDC is an effective strategy for gener-
ating therapeutic anti-cancer immunity mediated by plas-
mid DNA. The enhanced anti-cancer activity elicited by
LDC immunization is mediated in part by the generation
of CD8+ T cells with increased functional activity[15]. The
breaking of immune tolerance to "self-antigens" associ-
ated with angiogenesis by active immunity[19] is an

attractive approach to cancer therapy. Angiogenesis is a
complex process involving many molecules and cellular
events. VEGF and its receptor, VEGFR-2 (Flk-1/KDR), play
a key role in tumor angiogenesis. That blocking the VEGF-
VEGFR-2 pathway may inhibit tumor growth is exempli-
fied in studies using neutralizing KDR/Flk-1 mAb[25],
KDR/Flk-1 kinase inhibitors[26,27], or a dominant-nega-
tive Flk-1 receptor[28], all of which were shown to inhibit
angiogenesis and tumor growth. It has been reported that
peripheral T-cell tolerance against murine Flk-1 can be
broken by an oral DNA vaccine encoding autologous Flk-
1, delivered by an attenuated strain of Salmonella typhimu-
rium[29]. Plasmid DNA vaccines are attractive because
they are relatively easy to engineer and produce, and are
safe to administer to humans [8-10].

Our studies demonstrate that immune tolerance can be
broken by LDC-mediated immunization with human

Toxicity observationFigure 7
Toxicity observation. H & E staining of heart, liver, kidney and ovary in recipient mice. No hemorrhage in organs appeared 
in the pORF-hFlk-1 LDC group and no differences were seen among groups (pORF-hFlk-1 LDC, pORF-mFlk-1 LDC, pORF-
mcs LDC, GS).
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VEGFR-2. Using this approach, we induced anti-tumor
effects in mouse models of colon carcinoma (CT26 cells)
and breast cancer (4T1 cells), and against both primary
tumors and lung metastases (4T1 tumors). A 50% molar
change on the liposomes significantly increased the accu-
mulation of DNA in the lungs of mice 24 h post-injec-
tion[30]. Thus, for lung metastases, this could be of great
benefit. There was an apparent protection from tumor
growth in mice immunized with human VEGFR-2 LDC.

The possible mechanism by which anti-cancer activity is
induced by xenogeneic molecules has been reported pre-
viously[18,19]. Autoantibodies against mFlk-1 produced
by mice immunized with human VEGFR-2 LDC were
identified by Western blot analysis. T cells isolated from
mice immunized with human VEGFR-2 LDC showed
increased cytotoxicity against hFlk-1-positive MS1 target
cells. In our studies, we also observed potential toxicity.
Vaccination prolonged the lifespan of mice and improved
the quality of life (QOL) of tumor-bearing mice. Weight
loss, ruffling of fur, behavior, or feeding were changed in
tumor-bearing mice post-treatment but improved
between treatments. No pathological changes in the liver,
kidney, ovary or heart were observed. Only mild changes
of peripheral blood counts and differentials were
observed following immunizations, and biochemical tests
were normal. Thus, the human VEGFR-2 vaccine was well
tolerated by mice.

Conclusion
The enhanced anticancer activity elicited by human
VEGFR-2 LDC immunization was dependent on the
impairment of the formation of new tumor blood vessels
through an anti-angiogenesis mechanism. In addition,
immune tolerance to self-Flk-1 was consequently broken
down by vaccination with human VEGFR-2 LDC. The
human VEGFR-2 vaccine was well tolerated by mice. Our
data may provide a vaccine strategy for cancer therapy,
through the induction of autoimmunity against the
growth factor receptor associated with angiogenesis medi-
ated by plasmid DNA encoding a xenogeneic homologue.
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