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Abstract

Background: The use of food-grade lactococci as bacterial carriers to DNA delivery into
epithelial cells is a new strategy to develop live oral DNA vaccine. Our goal was to develop a new
plasmid, named pValac, for antigen delivery for use in lactococci. The pValac plasmid was
constructed by the fusion of: i) a eukaryotic region, allowing the cloning of an antigen of interest
under the control of the pCMV eukaryotic promoter to be expressed by a host cell and ii) a
prokaryotic region allowing replication and selection of bacteria. In order to evaluate pValac
functionality, the gfp ORF was cloned into pValac (pValac:gfp) and was analysed by transfection in
PK 5 cells. The applicability of pValac was demonstrated by invasiveness assays of Lactococcus lactis
inlA+ strains harbouring pValac:gfp into Caco-2 cells.

Results: After transfection with pValac:gfp, we observed GFP expression in PKI15 cells. L. lactis
inlJA+ were able to invade Caco-2 cells and delivered a functional expression cassette (pCMV:gfp)
into epithelial cells.

Conclusion: We showed the potential of an invasive L. lactis harbouring pValac to DNA delivery
and subsequent triggering DNA expression by epithelial cells. Further work will be to examine
whether these strains are able to deliver DNA in intestinal cells in vivo.

Background sional or non-professional phagocytes and deliver

Numerous infectious agents invade the host through the
mucosa to cause disease. The use of bacterial carriers to
deliver DNA vaccine by oral route constitutes a promising
vaccination strategy [1-3]. Most of the bacteria used to
deliver DNA vaccine into mammalian cells are invasive
pathogens such as Shigella flexneri, Yersinia enterocolitica,
Listeria monocytogenesis, Salmonella thiphymurium or Myco-
baterium [3-7]. Such bacteria are able to invade profes-

eukaryotic expression vectors resulting in cellular expres-
sion of the gene of interest [1,4,8]. Despite the use of
attenuated strains, the risk associated with potential rever-
sion to the wild-type (virulent) phenotype is a major con-
cern [9].

The use of food-grade lactic acid bacteria (LAB) as DNA
delivery vehicles represents an attractive alternative to the
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use of such attenuated pathogens and other mucosal
delivery systems such as liposomes or microparticles [10].
LAB is a diverse group of bacteria transforming sugars into
lactic acid. These non-pathogenic and non-invasive Gram-
positive bacteria occupy different ecological niches, rang-
ing from plant surfaces to the digestive tract (DT) of man
and animals [11].

Antigen and cytokine delivery at the mucosal level by
food-grade Lactococcus lactis, the model LAB, has been
intensively investigated [12-16] (for review see [10]). In
contrast to bacteria-mediated delivery of protein antigens,
bacteria-mediated delivery of DNA could lead to host
expression of post-translational modified antigens and
therefore to the presentation of conformational-restricted
epitopes to the immune system [17].

We previously developed a strategy using recombinant
invasive lactococci to deliver a plasmid containing a
eukaryotic expression cassette gene into epithelial cells.
We demonstrated that L. lactis expressing Listeria monocy-
togenes Internalin A (inlA) gene (LL-inlA+) was internal-
ized by human epithelial cells in vitro and enterocytes in
vivo after oral administration of guinea pigs [18]. We also
showed that green fluorescent protein (gfp) open reading
frame (ORF) under the control of a eukaryotic promoter
carried by such LL-inlA+ strains could be delivered into
and expressed by epithelial cells [18]. These results were
obtained with a large plasmid (10 kb) which is a cointe-
grate between an E. coli and a L. lactis replicons. During
further attempts to insert antigens in this plasmid, we ver-
ified that its structure and size made difficulty not only
cloning strategies but also transformation steps in lacto-
cocci.

Table I: Bacterial strains and plasmids used in this work.

http://www.gvt-journal.com/content/7/1/4

To improve our delivery DNA strategy, we constructed a
new smaller plasmid, named pValac (Vaccination using
lactic acid bacteria). The pValac plasmid was constructed
by the fusion of: i) a eukaryotic region, containing the
CytoMegaloVirus promoter (pCMV), a multiple cloning
site, and the polyadenylation signal of Bovine Growth
Hormone (BGH polyA) and ii) a prokaryotic region, con-
taining the RepA/RepC replication origin for both E. coli
and L. lactis and a chloramphenicol resistance gene for
bacteria selection.

Methods

Bacterial strains and growth conditions

The bacterial strains and plasmids used in this work are
listed in Table 1[18-21]. Escherichia coli DH50. was grown
on Luria-Bertani medium and incubated at 37 ° C with vig-
orous shaking. L. lactis MG1363 was grown in M17
medium containing 0.5% glucose (GM17). Bacteria were
selected by addition of antibiotics as follows (concentra-
tions in micrograms per milliliter): for E. coli, erythromy-
cin (100) and chloramphenicol (10); for L. lactis,
erythromycin (5) and chloramphenicol (10).

DNA manipulations

DNA manipulations were performed as described [22]
with the following modifications: for plasmid DNA
extraction from L. lactis, TES (25% sucrose, 1 mM EDTA,
50 mM Tris-HCI pH 8) containing lysozyme (10 mg/ml)
was added for 10 min at 37°C to prepare protoplasts.
Enzymes were used as recommended by suppliers. Elec-
troporation of L. lactis was performed as described [23]. L.
lactis transformants were plated on GM17 agar plates con-
taining the required antibiotic and were counted after 2-
day incubation at 30°C.

Strain/plasmid Characteristics Source/Reference
E. coli DH5a (F-$80dlacZAMI5 A(lacZYA- argF)U169 endAl recAl hsdR17(r,- m,+) deoR thi-1 Invitrogen
supE44 A~ gyrA96 relAl)
L. lactis MG 1363 L. lactis subsp. cremoris [19]
LL-inlA+ L. lactis expressing L. monocytogenes inlA gene/Ery? strain [18]
LL-pIL253 L. lactis MG 1363 harboring pIL253 plasmid/Ery? strain [18]
LL-pIL253 pValac:gfp+ L. lactis MG1363 harboring plL253 and pValac:gfp plasmids/Ery2-Cmb strain Innocentin et al., [unpublished data]
LL-inlA+ pValac:gfp+ L. lactis expressing L. monocytogenes inlA gene and harbouring pValac:gfp/Ery2-Cmb Innocentin et al., [unpublished data]
strain
pVAXI Expression vector containing pCMV, MCS and BGH polyA/Amp<-Kmd Invitrogen
TOPO Cloning vector/Ampe¢ Invitrogen
TOPO:VAXI TOPO vector containing the pCMV, MCS and BGH polyA fragment of pVAX/Ampc  This study
pXyIT:CYT Expression vector containing RepA/RepC replication origin/Cmb [20]
pValac Expression vector containing pCMV, MCS, BGH polyA, and RepA/RepC replication  This study
origin/Cmb
pEGFP-NI Expression vector containing the gfp gene/Ampc-Km¢d BD Bioscience, Clontech
pValac:gfp pValac containing gfp ORF inserted in the Xbal/BamHI sites/Cmb This study
plL253 High-copy number lactococcal vector/Ery? [21]

aEry: erythromycin resistance, °Cm: chloramphenicol resistance, “Amp: ampicilin resistance, IKm: kanamicin resistance.
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pValac vector design and construction

The eukaryotic region of pValac was obtained from the
pVAX1 vector (Table 1). A 860 bp DNA fragment was gen-
erated by PCR using a polymerase with proof reading
activity (Platinum pfx high fidelity polymerase, Invitro-
gen, Sao Paulo, Brazil) and the oligonucleotides CMVB-
glFwd (5' GGAGATCTGCGTTACATAACTTACGG 3') and
BGHClaRev (5' GGATCGATTAGAAGCCATAGAGCCC 3')
introducing respectively a BgI/Il and a Clal (underlined)
sites in the fragment. The amplified PCR product was
cloned into TOPO vector (Table 1) resulting in
TOPO:VAX1 and was introduced by transformation in E.
coli DH5a (Table 1). The integrity of the insert was con-
firmed by sequencing [24] using DYEnamic™ ET Dye Ter-
minator Kit in a MEGABACE 1000 apparatus (GE
Healthcare, Sao Paulo, Brazil). TOPO:VAX1 was further
digested with Bglll and Clal restriction enzymes and gel
purified (S.N.A.P. gel purification kit, Invitrogen). The
prokaryotic region of pValac was obtained from the
pXylT:CYT (Table 1). A 2882 bp DNA fragment was
obtained after BglIl and Clal digestion and gel purified
(S.N.A.P. gel purification kit, Invitrogen). Bglll/Clal-
digested and purified TOPO:VAX1 and pXylT:CYT frag-
ments were ligated using T4 DNA ligase (Invitrogen) to
obtain pValac vector (3742 pb) (Table 1). pValac was
established by transformation in E. coli DH5a. and then in
L. lactis MG1363 strains (Table 1). The integrity of the
pValac sequence was confirmed by sequencing as
described above.

pValac:gfp construction

The gfp ORF was cloned into pValac in order to evaluate
its functionality. The 726 bp gfp ORF, obtained from
pEGFP-N1 plasmid (Table 1), was digested with Xbal and
BamHI restriction enzymes. The gfp ORF fragment
obtained was purified (S.N.A.P. gel purification kit, Invit-
rogen) and then inserted into the pValac MCS using the
same restriction enzymes resulting in pValacgfp (4468
bp). The integrity of the gfp ORF was confirmed by
sequencing as described above.

Transfection assays of pValac into porcine epithelial cells
The pValac:gfp plasmid was assayed for GFP expression by
transfection into Porcine Kidney cell line (PK15 cells).
Fifty to 80% confluent PK15 cells were cultured in Dul-
becco modified Eagle medium, 10% fetal calf serum, 2
mM L-glutamine (BioWhittaker, Cambrex Bio Science,
Verviers, Belgium), 100 U penicillin and 100 g streptomy-
cin. PK15 cells were transfected with 1.6 ug of pValac:gfp,
pEGFP-N1 (positive control) or pIL253 (negative control)
previously complexed with Lipofectamine 2000 (Invitro-
gen). pIL253 was used as a negative control due to the fate
that it is an empty lactococcal plasmid; being more suita-
ble for our next step (see below). The GFP-producing cells
were visualized 48 hours after transfection with an epiflu-
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orescent microscope (Nikon Eclipse TE200 equipped with
a digital still camera Nikon DXM1200). Transfection
assays were performed in triplicate.

Invasiveness assays of bacteria into human epithelial cells
To demonstrate the efficacy of pValac as a delivery vector,
LL-inlA+ strains were transformed with pValac:gfp (LL-
inlA+ pValac:gfp+) (Table 1). In vitro invasion assays of
bacteria into human cells were performed using the
human colon carcinoma cell line Caco-2 as previously
described [25] with some modifications [18]. Briefly,
eukaryotic cells were cultured in P6 wells plates contain-
ing 1 x 10° cells per dish in RPMI supplemented with 2
mM L-glutamine and 10% fetal calf serum. LL-inlA+ pVa-
lac:gfp+ or L. lactis pIL253 pValac:gfp+ (LL-pIL253 pVa-
lac:gfp+) (negative control) (Table 1) (OD600 = 0.9-1.0)
were added to mammalian cells so that the multiplicity of
infection (MOI) was about 103 bacteria/cell. After three
hours of internalization, cells were treated for two hours
with gentamicin (20 mg/ml) to kill extracellular bacteria.
Fluorescent cell quantification was evaluated at 24 and 48
hours after gentamicin treatment by flow cytometry on
Fluorescent Activated Cell Sorter (FACS, Becton Dickin-
son, France). The GFP-producing cells were visualized
with an epifluorescent microscope (Nikon Eclipse TE200
equipped with a digital still camera Nikon DXM1200).
Internalization and FACS assays were performed in tripli-
cate.

Results and discussion

Picturing pValac

In this work, which is part of an ongoing project geared to
implement safer strategies for DNA deliver and expression
into eukaryotic cells, we reinforce the use of Lactococcus
lactis as DNA delivery vehicle [18,26]. To improve our
delivery DNA strategy, we constructed a new expression
plasmid, the pValac.

pValac is depicted in Figure 1A. It harbours the eukaryotic
region containing the CytoMegaloVirus promoter
(pCMV), a multiple cloning site (MCS), and the polyade-
nylation signal of Bovine Growth Hormone (BGH polyA)
needed for a gene expression by eukaryotic host cells. Its
prokaryotic region contains the RepA/RepC replication
origin for both E. coli and L. lactis and a chloramphenicol
resistance gene (Cm) for bacteria selection. The MCS (Fig-
ure 1B), inserted between the eukaryotic promoter pCMV
and the BGH polyA, carries some potential restriction
enzymes that can be used to clone a gene of interest and
the T7 primer binding site for its sequencing.

Transfection assays of pValac into porcine epithelial cells
The pValac:gfp ORF was used for transfection assays into
PK15 cells. Forty-eight hours after transfection with pVa-
lac:gfp and pEGFP-N1 (positive control), we observed
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Nhel Aflll Kpnl

ATCGAAA'IJTAATACGACTCACTATAGG!GAGACCCAAGCTGGCTAGCGTTTAAGCTTAAGCTTGGTACCGA
EcoRlI Pstl

EcoRV Notl Xhol

GCTCGGATCCGGGATCCACTAGTCCAGTGTGGTGGAATTCTGCAGATATCCAGCACAGTGGCGGCCGCTC

GAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGT

TTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGA

A
pValac
3742 bp
T7 promoter/priming site
B
BamHI
Xbal Apal
Figure |

polyA

Structure of pValac plasmid. A: Boxes indicate: Multiple cloning site (MCS) and BGH polyadenylation region (polyA).
Arrows indicate: cytomegalovirus promoter (pCMV); replication origin of L. lactis (Rep A) and E. coli (Rep C) and chloramphen-
icol resistance gene (Cm). Clal and Bglll restriction sites used to ligate eukaryotic and prokaryotic regions are showed. B: Mul-
tiple cloning site showing the T7 promoter/priming site, different restriction enzyme sites and polyA site.

comparable GFP expression in these epithelial cells (Fig-
ure 2A and 2B, respectively). No GFP expression was
observed after transfection with pIL253 (Figure 2C). This
result demonstrates that pValac is functional and it could
be used for our further experiment.

Invasiveness assays of bacteria into human epithelial cells
Internalization of LL-inlA+ pValac:gfp+ into Caco-2 cells
led to GFP expression in approximately 1% of the cells 48
hours after cell invasion (Figure 3, Panels A1 and B1). A
very low percentage of GFP expression was detected when
the non-invasive control strain LL-pIL253 pValac:gfp+ was
used (Figure 3, Panels A2 and B2). A MOI of 102 bacteria/
cell is generally used for pathogens like L. monocytogenes
[25] due to its virulence factors that helps bacteria to

escape from vacuoles [27]. Here we used a higher MOI
(103bacteria/cell) for L. lactis, a suitable multiplicity
required for an efficient internalization for these bacteria
[18]. We thus demonstrate that invasive LL-inlA+ pVa-
lac:gfp+ were able to invade Caco-2 cells and to deliver a
functional expression cassette (pCMV:gfp) into epithelial
cells.

It is worth to note that concerning expression data, it is
not surprisingly that we had comparable levels of approx-
imately 1% using pValac:gfp or pVE3890 [18] since both
plasmids contain the same eukaryotic genetics compo-
nents, the pPCMV promoter and the BGH polyA. Neverthe-
less, we observed that pValac is more suitable for cloning
and transformation in lactococci. It is easily comprehensi-
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Figure 2
Epifluorescent micrograph of 48 hours GFP expression by PKI5 cells after transfection. PK15 cells were trans-
fected with pValac:gfp, pEGFP-N| (positive control) and plL253 (negative control) plasmids. A: pValac:gfp, B: pEGFP-NI, C:

pIL253.
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Figure 3

Gene expression analysis after invasion assays. A: In vitro gene transfer after 48 hours following invasion of Caco-2 cells
with L. lactis strains carrying pValac:gfp assessed by FACS. Al: LL-inlA+ pValac:gfp+; A2: LL-pIL253 pValac:gfp+ (negative control).
B: Epifluorescent micrograph of GFP expression by Caco-2 human epithelial cell line after internalization. Bl: LL-inlA+ pVa-

lac:gfp+; B2: LL-pIL253 pValac:gfp+.
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ble that working with a small plasmid is advantageous to
assemble these molecular techniques [28-31] than work-
ing with a big size plasmid.

The hypothesis for DNA delivery and expression is based
on the infection of host cells by bacterial carriers: follow-
ing internalization, invasive L. lactis is probably taken up
in the vacuoles and target for degradation, thereby releas-
ing pValac:gfp. Then, by an unknown mechanism, the
plasmid escapes the vacuoles and reaches the nucleus
where the gene (gfp ORF in our case) could be translated
by the host cell [32-34]. Questions arise if while non-
recombinant lactic acid bacteria are generally regarded as
safe they still be viewed as such when invasive. L. lactis
inlA+ survival rate was measured and showed a decrease
from 4,5 log CFU/ml for 24 hours after internalisation to
2 log CFU/ml after 60 hours (data not shown). In fact, it
was already suggested that L. lactis vaccine vectors engi-
neered to access the cytoplasmic antigen presenting path-
way are incapable of further growth in this environment
[35,36]. This result suggests that, in vitro, these bacteria
could still be regarded as safe when engineered to be inva-
sive.

Conclusion

Mucosal epithelium constitutes the first barrier to be over-
come by pathogens during infection. The use of non-inva-
sive bacteria for oral DNA vaccine delivery to induce
intestinal mucosal immunity is a promising vaccination
strategy used during the last decade. An attractive DNA
vaccine strategy is based on the use of the food-grade LAB,
Lactococcus lactis, as DNA delivery vehicle at the mucosal
level.

In this sense, we constructed the pValac, a new plasmid for
DNA delivery. pValac contains eukaryotic genetic ele-
ments, allowing cloning and further expression of an anti-
gen of interest by an eukaryotic host cell as well as a
prokaryotic region allowing replication and selection of
bacteria. After cloning the gfp ORF in pValac we could
show that: i) invasive L. lactis strains (inlA+) carrying pVa-
lac:gfp were able to enter epithelial cells and ii) after inter-
nalization, the host cells expressed the GFP protein.
Therefore we could demonstrate the potential application
of both plasmid and strain, to implement safer strategies
for oral DNA deliver and expression into eukaryotic cells
using LAB.

Further experiments have been performed to examine
whether these strains are able to release enough DNA to
ensure an efficient intestinal cell expression in vivo. In long
term, an alternative strategy for DNA vaccine delivery
could be achieved based on these recombinant L. lactis
carriers.
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