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Abstract

Background: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer
cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific
antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on
prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for
treatment of prostate cancer.

Methods: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to
induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57
BL/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected
with 50 μg plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom
designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the
muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a
separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of
synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously
with TRAMPC1/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored.
Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNg. Histological assessment of the
tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated
mice.

Results: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged
survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration
of the synthetic CpG with phPSA increased anti-tumour responses, preventing tumour occurrence in 54% of
treated animals. Vaccination with phPSA resulted in anti-hPSA Abs production and a significant production of IFNg
was observed in immunised animals (p < 0.05). Immune responses were tumour specific and were transferable in
adoptive T cell transfer experiments.

Conclusions: This phPSA plasmid electroporation vaccination strategy can effectively activate tumour specific
immune responses. Optimisation of the approach indicated that a four-dose regimen provided highest tumour
protection. In vivo electroporation mediated vaccination is a safe and effective modality for the treatment of
prostate cancer and has a potential to be used as a neo-adjuvant or adjuvant therapy.

Background
Prostate cancer remains a major health issue in the pre-
sent era, largely due to limitation of therapeutic options
especially in advanced disease. Prostate cancer repre-
sents the most common non-cutaneous cancer and is
the second leading cause of cancer related deaths

among American men [1]. There are continuing efforts
to discover new treatments for prostate cancer, in parti-
cular for advanced disease. Novel therapeutic strategies
are needed to prevent progression from localised to
advanced disease and to further improve survival out-
comes in patients with metastatic disease. Manipulation
of the immune system and destruction of cancer cells
by the immune activated mechanisms have shown pro-
mising results in the treatment of malignant diseases [2].* Correspondence: m.tangney@ucc.ie

1Cork Cancer Research Centre, Mercy University Hospital, Cork, Ireland

Ahmad et al. Genetic Vaccines and Therapy 2010, 8:1
http://www.gvt-journal.com/content/8/1/1 GENETIC VACCINES 

AND THERAPY

© 2010 Ahmad et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:m.tangney@ucc.ie
http://creativecommons.org/licenses/by/2.0


Healthy individuals are known to have some immune
inhibitory effects on prostate cancer growth (at least
early phase of the disease), while progressive tumour
development is a result of tumour escape from the
immune system. Many factors are involved in tumour
immune escape. Blades et al. [3] have shown the reduc-
tion of MHC-1 expression in 34% of primary prostate
cancer and 80% tumours associated with lymph node
metastases. Other causes include secretion of inhibitory
substances e.g. IL-10, TGF-b [4], abnormal T-lympho-
cyte signal transduction [5] and expression of Fas ligand,
which may enable tumour cells to induce apoptosis in
Fas expressing tumour infiltrating lymphocytes [6].
Immunological therapies may overcome these escape
pathways and can potentially play an effective role in
the management of prostate cancer in isolation or in
conjunction with available therapies. Patients with
advanced prostate cancer are known to have defective
cell mediated immunity [7]. Both antibody and CD8+ T-
cell immune responses have been reported in patients
with advanced prostate cancer [8-10].
For malignant diseases different approaches of active

immunisation have been explored, including vaccina-
tion with cDNA [11], RNA [12], proteins or peptides
[13]. Over the past years, several prostate cancer asso-
ciated antigens have been reported including prostate
specific antigen (PSA), prostate-specific membrane
antigen (PSMA) [14], prostate stem cell antigen
(PSCA) [15] and six transmembrane epithelial antigen
(STEAP) [16]. We have previously demonstrated the
potential for electroporation (EP) mediated DNA vacci-
nation with PSCA [17]. In the present study, we focus
on optimisation of in vivo DNA plasmid vaccination,
in terms of dose schedule and combination with CpG
oligonucleotides. We investigated the utilisation of a
human PSA expressing plasmid in a murine model of
prostate cancer. PSA, a serine protease secreted by
both normal and transformed epithelial cells, is almost
exclusively expressed on prostatic epithelial cells, and
its expression is conserved in nearly all advanced pros-
tate cancer [18]. PSA is widely used as marker for
diagnosis and staging of prostate cancer [19]. Although
PSA is a secreted protease, MHC related epitope pro-
cessing in target PSA expressing cells has been shown
to make PSA a valid target for vaccination [20]. Addi-
tionally, a DNA vaccination with plasmid encoding
PSA has a potential to evoke specific anti-tumour cel-
lular immune responses [21].
DNA vaccines induce immune responses by direct

expression of the antigen by the host cells. Electric pulse
parameters optimal for the plasmid delivery have been
shown to enhance humoral immune responses [22].
Moreover, plasmid DNA contains CpG motifs, which
are immune-stimulatory and have been shown to induce

potent immunological adjuvant effects [23,24]. While
gene based vaccines for prostate cancer have been stu-
died previously, optimal vaccine schedule with EP driven
plasmid delivery has not been evaluated. This study aims
to test various EP vaccination regimens for prostate can-
cer in an animal model.

Methods
Plasmids
The human PSA (hPSA) expressing plasmid pUMFG/
PSA/IRES/CD25 (hereafter referred to as phPSA) was
kindly supplied by Jeffrey A Medin, Division of Experi-
mental Therapeutics, Ontario Cancer Institute, Tor-
onto, Canada [25]. Vaccine gene free backbone
plasmid (empty vector) was generated in our labora-
tory for use in control groups. For in vivo vaccination,
plasmid DNA was prepared using an Endotoxin free
mega kit (Qiagen, West Sussex, UK). Required plas-
mids were confirmed by enzyme digest and running on
1% agarose gel (Sigma, Dublin, Ireland). Group of mice
were also treated with firefly luciferase plasmid
(pCMV- luc). The firefly luciferase gene under the
control of the CMV promoter was provided by Plasmid
Factory GmbH (Bielefeld, Germany). Plasmid concen-
trations were determined with the aid of the Nano
Drop 1000 Spectrophotometer (Thermo Scientific,
MA, USA).

Cell lines
The murine recycled prostate cancer cell line
TRAMPC1 was kindly provided by RP Ciavarra [26] of
Eastern Virginia Medical School, Norfolk USA.
TRAMPC1 cells were stably transfected with phPSA,
using Fugene (Roche, West Sussex, UK) according to
manufacturer ’s instructions. The hPSA expressing
stable transfected clone was generated following selec-
tion with 200 μg/ml of Geneticin (Invivogen, Cayla,
France). The clone was then isolated and purified fol-
lowing three rounds of single cell dilution and desig-
nated TRAMPC1/hPSA. The expression of hPSA in
TRAMPC1/hPSA was analysed by isolation of RNA
and reverse transcription polymerase chain reaction
(RT-PCR). For RT-PCR, first strand cDNA was synthe-
sised using omniscript reverse transcription kit (Qia-
gen, West Sussex, UK). The hPSA cDNA was amplified
by PCR, using Pwo polymerase (Roche, West Sussex,
UK), with hPSA foreword primer (5’-GCAGCATTGA
ACCAGAGGAG-3’) and hPSA reverse primer (5 ’-
CGATGGTGTC CTTGATCCAC-3’). PCR reaction
conditions included 15 min of initial denaturation at
95°C followed by 32 cycles of 1 min at 94°C, 1 min at
57°C, 1 min at 72°C. The wild-type and transfected
TRAMPC1 cells were grown in culture at 37°C as
reported previously [17].
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Animals and tumour induction
Male C57 BL/6 or MF1-nu/nu mice, 6 - 8 weeks old
were used in the study. The mice were obtained from
Harlan Laboratories (Oxfordshire, England). The animal
ethics committee of University College Cork approved
all experiments. Mice were kept at a constant room
temperature (22°C) with a natural day/night light cycle
in a conventional animal colony. Standard laboratory
food and water were provided. All mice were main-
tained in a pathogen free animal facility for at least 2
weeks before the experiments. Subcutaneous (s.c.)
tumour inoculation and the tumour growth measure-
ments were recorded (on average every 2 days) as
reported previously [17]. A mouse was considered incur-
able and euthanised by cervical dislocation when the
tumour diameter reached 1.5 cm. From these volumes
tumour growth curves were constructed. All of the
immunological data reported is representative of at least
two independent studies. Each study was performed
with 5 or 6 mice per group.

Optimisation of in vivo vaccination
Male C57 BL/6 mice were randomly divided into three
groups; phPSA, empty vector and untreated. Mice were
anaesthetised during all treatments by intra-peritoneal
(i.p.) administration of 200 μg xylazine and 2 mg keta-
mine. For vaccine delivery, a custom-designed applicator
(Cliniporator, IGEA, Modena Italy) with two needle
electrode (4 mm apart) was used. Both needles were
placed through the skin central to the quadriceps mus-
cle. The muscle was injected between electrode needles
with 50 μg plasmid DNA in 50 μl sterile phosphate buf-
fer saline (PBS). After 80 s, square-wave pulses (1200 V/
cm 100 ms × 1 and 120 V/cm 20 ms, eight pulses) were
administered in sequence using a custom-designed pulse
generator (Cliniporator). The untreated group did not
receive EP. To determine the optimum vaccination pro-
tocol, three different regimens of vaccination were tested
(Figure 1).

Confirmation of antigen expression in muscle tissues
The ability to deliver plasmid DNA into the quadriceps
muscles, using this electroporation technique, was
demonstrated by electroporation of pCMV-luc and
detection of subsequent firefly luciferase expression. The
pCMV-luc was injected i.m. [50] μl (30 mg/ml)] fol-
lowed by EP. After 72 h, firefly luciferin (80 l of 30 g/l
conc.) (Biosynth, Basel, Switzerland) was injected intra-
peritoneal as a substrate for the luciferase enzyme. Mice
were anesthetised as previously outlined. Ten minutes
post luciferin injection, live anesthetised mice were
imaged for 1 min using an intensified CCD camera
(IVIS Imaging System, Xenogen, Caliper Life Sciences,
Runcorn, England). After imaging, the mice were culled

and the transfected leg was separated and imaged
immediately.
Specific gene expression (hPSA) by the muscles cells

post EP mediated vaccination was demonstrated by RT-
PCR of the transfected muscles. After 72 hours of the
vaccine delivery, mice were culled by cervical dislocation
and quadriceps muscle excised. The muscle tissues were
homogenised in TRI Reagent® (Molecular Research Cen-
tre, Inc.) to isolate total RNA. DNase treated total RNA
from the transfected muscle was subjected to RT-PCR
amplification with hPSA specific primers at same condi-
tions (as described earlier).

Antigen specificity and long-term tumour protection
Groups of the regimen 3 treated and untreated mice
were challenged either with wild TRAMPC1 or with
TRAMPC1/hPSA. All mice developed tumours, these
tumours were surgically excised when tumours
approached 5-7 mm in major dimension. The animals
were observed for another 30 days without recurrence
of the tumours. Tumour free mice at that stage were re-
challenged, in the opposite flank, with the same
tumourogenic dose of the initially challenged tumours
(wild or transfected). Any re-growth of the tumours was
observed and growth kinetics recorded.

ELISA
The phPSA induced activation of the immune system
and production of interferon gamma (IFNg), a prototype
Th1 cytokine, was tested in vaccinated and naive mice
as previously reported [17]. An indirect ELISA was per-
formed for detection of anti-human PSA antibodies.
Serum from mice vaccinated with phPSA was analysed
for anti-human PSA antibodies. Blood samples from the
jaw veins were collected in heparin containing vials
from both phPSA treated and from naive mice. To sepa-
rate plasma the samples were centrifuge for 10 min at
1000 × g within 30 min of collection. Assays were per-
formed either immediately or sample were stored at -20°
C for later use. A single sample was tested from each
animal at each time point. Blood samples were collected
at week 2, 4, 8, and 12 after last vaccination. Plasma
from the naive male C57 BL/6 mice was used as control.
The 96-well plates were coated with 1 mg/ml of human
PSA antigen (Europa Bioproducts, Cambridge, UK) in
PBS containing 0.05% NaN3 (PBSN) and incubated at
room temperature (RT) overnight. Plates were blocked
for 1 hour at 37°C by the addition of 10% rabbit serum
diluted in PBSN. After washing three times with PBSN,
either PSA mAb (10-P20A, 1 mg/ml) (Europa Biopro-
ducts) in blocking buffer (0.05% Tween 20 and 0.25%
BSA in PBSN), as a standard, or 50 μl of mouse plasma
samples in blocking buffer, as tests (1:10,1:100, 1:1000
dilutions were used) were added to the plates and
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incubated overnight at RT. The plates were then
blocked again by 1 hour incubation at 37°C in 10%
sheep serum, and further incubated with goat anti-
mouse IgG conjugated to alkaline phosphatase (Sigma)
for 5 hours at RT. After incubation with substrate,
(pNPP) qualitative hydrolysis of NPP was detected using
a microtiter plate reader (Vmax, Molecular Devices)
with a 405-nm filter. Dilutions were also made using
blocking buffer to re-assay samples that were beyond
linearity for the initial 1000 × dilution.

In vitro and in vivo cytotoxicity assay
For in vitro cytotoxicity assays, splenocytes were isolated
from the phPSA treated and naive mice. CTL activity
against the TRAMPC1/hPSA cells was analysed using
same protocols reported previously [17,27]. Results of
representative experiments are given as the mean +/-
standard deviation and of multiple experiments as the
mean +/- standard error. The development of an
immune mediated anti-tumour activity following treat-
ment was also tested by a modified Winn assay [27,28].
Splenocytes were isolated from the immunised and from
the naive mice. Groups of male C57 BL/6 mice received
s.c. injections of a mixture of splenocytes (from either
vaccinated or naive mice) and the TRAMPC1/hPSA. For
the s.c. inoculation, the splenocytes were mixed with
TRAMPC1/hPSA (5 × 106) in a proportion of 50:1 in

serum- free Dulbecco’s Modified Eagle’s Medium
(Gibco, Paisley, Scotland). Tumour devel-opment after
inoculation was monitored on alternate days.

Co-administration of phPSA with synthetic CpG
oligodeoxynucleotides
CpG oligodeoxynucleotides 1826, chosen according to
published data [29,30], had the following sequence
TTCATGACGTTCCTGACGTT (CpG motifs are
under-lined) with the backbone phosphorothioate stabi-
lised. The oligo CpG was synthesised by MWG
(Munich, Germany), reconstituted in sterile pyrogen free
water, and diluted in PBS for in vivo injection. Three
days after each application of EP driven vaccination
(regimen 3), mice were injected at same site with syn-
thetic oligo CpG (25 μg/injection). Mice in the control
groups were injected either with DNA vaccine or with
oligo CpG.

Statistical analysis
The primary outcome variable of the statistical ana-
lyses was the tumour volume in each mouse measured
at each time point. The principal explanatory variables
were the different treatment groups. Tumour volume
was analysed as continuous. Treatment groups were
analysed as categorical variables. At each time point, a
two-sampled t-test was used to compare mean tumour

• Day 0                      Day 14    Day 15
• 1st dose                   2ndRegimen 1

• Day 0       Day 7      Day 14
• 1st dose   2ndRegimen 2

• Day 0       Day 7        Day 14            Day 21             Day 28
• 1st dose   2nd dose   3rd dose          4thRegimen 3

Figure 1 Schematic representation of vaccination schedules. Regimen1 involved two vaccinations (day 0 and 14) with subsequent tumour
challenge on day 15. Regimen 2 involved vaccinations on day 0, 7, and tumour challenge on day 14. In regimen 3, four doses of vaccine were
given on day 0, 7, 14, and 21 followed by tumour challenge on day 28.
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volume within each treatment group. One-way
ANOVA was used to compare mean time of tumour
appearance in various groups. Animal survival was
represented by Kaplan Meyer survival curves. A p
value < 0.05 was interpreted as a significant difference.
Microsoft Excel 10.0 (Microsoft) was used to manage
and analyse data.

Results
Immune potential of TRAMPC1
To establish the growth and effects of the naive immune
reactivity against the recycled TRAMPC1 cells, s.c.
tumour inoculation of the TRAMPC1 was performed in
both immunocompetent (C57 BL/6) and athymic nude
(MF1-nu/nu) male mice with same tumourigenic dose
(5 × 106/mouse). Nude mice developed tumours earlier
than C57 BL/6, which grew more rapidly, resulting in
decreased survival of the nude mice (data not shown).
These results suggested that the presence of intact
immunity in C57 BL/6 mice has some inhibitory effects
on the growth of TRAMPC1 tumours, indicating that
the TRAMPC1 tumour can be targeted using immune
base therapies.
In vivo growth of the wild TRAMPC1 and TRAMPC1/

hPSA tumours in C57 BL/6 was comparable (data not
shown). This showed that the presence of the human
antigen (hPSA) in the TRAMPC1 did not cause signifi-
cant effects on in vivo tumour growth, validating the
suitability of the TRAMPC1/hPSA model.

In vivo gene delivery
In vivo luciferase activity was demonstrated after EP
mediated transfection. The successful transfection of the
quadriceps muscle group is shown in a representative
image (Figure 2a). RT-PCR analysis of the muscles trea-
ted with phPSA confirmed the successful gene expres-
sion in treated mice (Figure 2b).

Tumour protection by phPSA vaccination
Three different vaccination protocols were examined
(Figure 1) using the same EP parameters. All vaccination
regimens had variable degrees of inhibitory effects on
the tumour growth and animal survival (Figure 3). With
regimen 1, mean time of tumour appearance in phPSA
group was prolonged, although without statistical signifi-
cance. The mean time of the tumour appearance was 23
days in hPSA group, 18 days in empty vector and 21
days in untreated group (p = 0.07). However, the rate of
tumour growth was lower in the vaccinated group,
which resulted in significantly prolonged survival of the
phPSA immunised mice. The mean survival in phPSA
group was 53 days, 32 days in empty vector and 30.5
days in untreated group (p vs empty vector = 0.04, vs
untreated = 0.031) (Figure 3a).

With regimen 2, the mean time of tumour appearance
in the phPSA immunised group was 35.5 days, signifi-
cantly prolonged as compared to the both control
groups (p < 0.01). Additionally the tumour growth was
much slower in the immunised group than in untreated
(p = 0.02). Although the immunisation resulted in
slower tumour growth (compared to both control
groups), the difference in growth rate between phPSA
and empty vector group was not statistically significant
(p = 0.06). The mean survival in immunised mice was
55.6 days, 45 days in empty vector and 42.5 days in
untreated mice (p < 0.05) (Figure 3b).
Regimen 3 was found to be the most effective strategy

resulting in delay in time of tumour appearance,
retarded tumour growth, and prolonged survival of the
tumour bearing mice. The mean time of the tumour
appearance was 32.8 days in immunised group (p <
0.01). The tumour growth was also much slower as
compared to both groups (p vs empty vector = 0.04, vs
untreated = 0.01). These effects were translated into
prolonged survival with mean survival after tumour
inoculation in phPSA immunised group was 67.5 days,
45 days in empty vector and 40 days in untreated group
(p < 0.01) (Figure 3c). An overall comparison of the
immunised mice in all three regimens is shown in Fig-
ure 4. These data indicate the superior immunological
and tumour inhibitory effects of the four-dose vaccina-
tion. No adverse effects related with repeated vaccina-
tion were observed. There were no immunisation
related deaths and all mice remained healthy throughout
the experimental period.

Activation of humoral immunity
Production of anti hPSA antibodies in mice serum was
determined at various time points after last vaccination.
Higher levels of anti-hPSA antibodies were observed at
all study time points in regimen 3 and these levels
remained persistently higher for up to 12 weeks after
last vaccination. Regimen 1 also resulted in production
of the anti-hPSA antibodies, but a drop in the level was
observed after 4 weeks (Figure 5a). After 8 weeks from
the last vaccination, the assessment of antibodies was
not possible in regimen 1 and 2 - as the mice were
developing growing tumours and the tumour volumes
required culling of the animals to comply with ethical
committee guidelines. However in the regimen 3, the
mean level of the anti hPSA antibodies was 67.83 at
week 12 post last vaccination, indicating that there is
persistent production of the antibodies. This factor may
be responsible for the superior effects of the regimen 3.
At week 2 and week 4 post final vaccinations, the levels
of anti hPSA antibodies were not statistically different
between the tested regimens (p > 0.05). However, at
week 8 significant higher levels of the anti hPSA
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antibodies were recorded in the mice treated with regi-
men 3 (p vs regimen 1 = 0.01, vs regimen 2 = 0.02).

Activation of cell mediated immunity
Histological analysis (H & E) of the tumours from the
immunised mice showed abundant lymphocyte infiltra-
tion (data not shown). Immunisation with phPSA also
resulted in higher production of IFNg, indicative of Th1
immune activation. On comparison of the different vac-
cination protocols, variable amounts of the IFNg was
recorded in the treated mice. However, the levels in
regimen 3 were much higher than in other protocols.
Mean value of the IFNg in the regimen 3 was 163.3 pg/
ml, while 100.33 pg/ml and 78.33 pg/ml in the regimen
2 and 1 respectively (Figure 5b). The regimen 3 was
superior to the others (p vs regimen 1 < 0.01, vs regi-
men 2 = 0.01). Regimen 2 also resulted in more IFNg
activity than regimen 1 (p = 0.03). These observations
could explain the better tumour protective effects with
regimen 2 and 3 than with regimen 1.
In vitro cytotoxicity was determined in stimulated

splenocytes in all three regimens. Regimen 3 resulted in
higher cytotoxicity (75%) than regimen 2 (60%) and regi-
men 1 (50%) (Figure 5c). In vivo cytotoxicity was also
demonstrated by modified Winn assay. Splenocytes
from vaccinated mice (regimen 3) with longest survival
were harvested, mixed with TRAMPC1/hPSA and sub-
sequently inoculated s.c. in groups of C57 BL/6 mice.
Fifty percent of the mice receiving mixture of

splenocytes from phPSA immunised group failed to
develop tumours and importantly the tumour growth in
tumour developing mice was significantly retarded (p <
0.01) (Figure 6a). These effects resulted in overall
improvement in survival of these mice (Figure 6b).

hPSA-encoding plasmid provided antigen specific
protection
After tumour rechallenge with TRAMPC1/hPSA, only
33% mice developed tumours with previous neo-adju-
vant phPSA vaccination (Figure 6c). Additionally, the
tumour protective effects were specific, as there was no
tumour protection following rechallenge with wild
TRAMPC1. This demonstrates that phPSA treatment
induced a hPSA antigen-specific immune response giv-
ing resistance to the same tumour cell line, but not to a
wild type (-ve for hPSA).

Co-administration of synthetic Oligo CpG with phPSA
Use of a synthetic oligo CpG was examined aimed at
promoting Th1 type immune responses, to augment
potency of the phPSA vaccine. After four vaccines and
adjuvant doses of the oligo CpG, 6 out of 11 mice
remained tumour free for more than 100 days (cured).
Hence, the adjuvant effects of the synthetic oligo CpG
resulted in the complete tumour protection (relative risk
reduction of 0.45%) as compared with single therapy
alone. Time of tumour appearance was also prolonged
in combined therapy groups (Figure 7). No significant

Figure 2 Electroporation mediate plasmid transfection of quadriceps. a) In vivo muscle transfection by EP was assessed by luciferase activity
in resected leg 72 h post transfection (imaged for 1 min using an intensified CCD camera (IVIS Imaging System, Xenogen). b) RT-PCR analysis of
mRNA expression of hPSA in muscle. hPSA was only detected in muscles electroporated with phPSA (lane 1 100 bp marker, lane 2 phPSA
transfected muscle (sample a), lane 3 phPSA transfected muscle (sample b), lane 4 empty vector transfected muscle, lane 5 untreated muscle).
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increase in the levels of anti hPSA antibodies was
observed in phPSA + Oligo CpG groups as compared to
phPSA alone (data not shown).

Discussion
Electroporation driven immunisation with prostate anti-
gen (hPSA) encoding plasmid resulted in specific broad
immune responses with effective tumour containment.
For a cancer vaccine, the prevention of tumour progres-
sion may be dependent on both humoral and cellular
immunity. We have shown that EP mediated DNA
delivery is capable of stimulating both arms of the
immune system. Both humoral and cell mediated
immune responses were observed as indicated by the

anti hPSA antibodies production and in vitro/in vivo
cytotoxicity respectively. These immune responses were
antigen specific as in our tumour rechallenge experi-
ments, tumour protection was only observed in mice
challenged with transfected cells. In this study, all three
tested regimens provided variable effects on tumour
growth but repeated vaccination four times on weekly
interval resulted more effective immune responses. All
mice developed tumours indicating that these regimens
did not provide complete tumour protection. Neverthe-
less, low tumour burden and prolonged survival in
immunised mice was achieved with phPSA vaccination
with all vaccination regimens. Furthermore, on co-
administration of an immune adjuvant, synthetic CpG

Figure 3 Tumour protective effects of the various vaccination regimens. (n = 6) Regimen 1 - a) Time of tumour appearance - the mean
time of tumour appearance was comparable in various groups (p = 0.07). b) Representative tumour growth curve - phPSA immunised mice had
low tumour volumes but the difference was not significant (p vs empty vector = 0.34, vs untreated = 0.27). c) Representative Kaplan Meyer
survival curve - mean survival in the immunised group was significantly prolonged (p vs empty vector = 0.04, vs untreated = 0.03). Regimen 2 -
d) Time of tumour appearance - the phPSA treated mice remained tumours free for prolonged period of time (p < 0.01). e) Representative
tumour growth curve - tumour growth was retarded in the immunised group. The tumour volumes were significantly lower than the untreated
group at all time points (p = 0.04), but not when compared with empty vector group (p = 0.07). f) Representative Kaplan Meyer survival curve -
immunisation with phPSA provided significant prolonged survival of the treated mice (p vs empty vector = 0.01, vs untreated = 0.01). Regimen 3
- g) Time of tumour appearance - mean time of tumour appearance was delayed significantly as compared to both control groups (p < 0.01). h)
Representative tumour growth curve - tumour growth was significantly retarded in phPSA immunised group (p vs empty vector = 0.04, vs
untreated = 0.01). i) Representative Kaplan Meyer survival curve - average survival in immunise group was significantly prolonged (p vs empty
vector < 0.01, vs untreated < 0.01). Data are expressed as means ± SEM.
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containing oligonnucleotides, complete tumour protec-
tion was achieved in 54% of animals. Immune effects of
CpG DNA in infection have been well documented. It
has been observed that the release of unmethylated CpG
DNA (which is unique to prokaryotes) during an infec-
tion provides a ‘danger signal’ to the innate immune sys-
tem, triggering a protective immune response that
improves the ability of the host to eliminate infecting
microbes [31]. This initiates a cascade of events that
culminates in the indirect maturation, differentiation,
and proliferation of T cells and natural killer cells [32].
Together, these cells secrete cytokines and chemokines
that create a pro-inflammatory (IL1, IL 6, IL18 and
TNFa) and Th1-polarised (IFNg, and IL 12) immune
environment [33]. These events further facilitate the
development of antigen-specific CTLs [34,35]. The
induction of these immune responses by oligo CpG has
encouraged the idea of a potential role of oligo CpG as
vaccine adjuvant. In this study, the CpG adjuvant poten-
tiated the specific anti- tumour immunity as observed
by complete tumour growth inhibition.
Developments in tumour vaccines are influenced by

the substantial success of the various types of vaccines
for infectious diseases. The majority of these vaccines
for infectious diseases have effective prophylactic roles
with limited utility in therapeutic settings. Tumour vac-
cine studies have clearly shown that vaccines elicit effec-
tive responses against early, microscopic tumours, but
are ineffective against established, large tumour masses
[36,37]. These observations led to the idea of generation
of prophylactic, rather than therapeutic, cancer vaccines
[36]. DNA vaccines are simple vehicles for in vivo trans-
fection and antigen production leading to induction of
immunity. A DNA vaccine can activate the innate

immune responses by the presence of hypomethylated
CpG dinucleotide sequences with particular surrounding
motifs in the bacterial plasmid backbone [38]. This may
be a natural response to exposure to a bacterial DNA
and is a significant operational component of DNA vac-
cines. However, this does not completely explain how
plasmid DNA is perceived by the innate immune
response. Oligonucleotides are known to require Toll-
like receptor 9 (TLR-9) for immune-influencing activity,
but DNA vaccines operate normally in TLR-9 -/- mice,
indicating the involvement of additional receptors [39].
In terms of induction of immunity, it is difficult to

generalise about DNA vaccines. Site and procedure of
injection have critical influence on the immune activa-
tion. Muscle and skin cells are clearly able to act as anti-
gen depots. The skin contains antigen presenting cells
(APCs), hence capable of priming the immune system
[40]. Roos at al. have optimised intra-dermal EP
mediated PSA DNA vaccination and effectively induced
PSA-specific T cells [41]. However, after i.m. plasmid
delivery, it is likely that cross-presentation to APCs is
the major route to priming [42]. The uncertainty on this
point makes rational design more difficult. A recent
investigation of the route of access of exogenous phago-
somes to the MHC class I pathway could have rele-
vance. The phagosomes apparently carry elements of the
endoplasmic reticulum, creating organelles capable of
antigen processing for induction of cytotoxic T cell
responses [43,44]. It is conceivable that transfected
depot cells undergoing apoptosis can behave similarly.
The process that conveys antigens to the APCs seems
highly efficient in that DNA vaccines that produce only
very low levels of antigen can induce all arms of the
immune response [45]. However, there may be different
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requirements for priming or boosting immunity and to
activate anti tumour immunity; both processes need to
be efficient. It is also essential that tumour cells alone
can boost the vaccine-induced response so that continu-
ing pressure is maintained against emergent cells.
Translation of the immune therapies to clinical practice
requires important optimisation. Various regimens of
vaccine base therapies have been reported previously
[21,46]. However, on review of the literature it is still
not established which vaccination schedule is superior.

We have shown that repeated vaccination provided opti-
mal immunological tumour protective effects in our set-
ting. Furthermore, repeated EP driven vaccination was
safe as all immunised mice remained healthy and no
adverse effect or treatment related death was observed.
The effective delivery of the vaccine vector to the host

cells is a prime step for achieving immune activation.
We used selected parameters of EP as a tool to boost
the transfection of the muscle cells [27]. The transfer of
DNA into the cells is a process where the cells
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membranes are initially permeabilised and then the
DNA moved by electrophoretic forces into cytosol dur-
ing the following pulses. Because of this, it has been
shown that small molecules can diffuse into permeabi-
lised cells in the minutes before membrane resealing. In
contrast, there is no gene transfer if the DNA is added
after the pulse [47]. Electric pulse parameters optimal
for plasmid delivery (in the region of 1200 V/cm, 6-8
pulses) are known to increase gene expression 100-fold
in muscle and other tissues, and have been shown to
enhance humoral immune responses [22]. The high vol-
tage pulse was to induce electroporation in the cell
membrane and the ensuing small voltage pulses were to
create an electrophoretic field to assist movement of the
negative charged DNA plasmid across the cells [48,49].
The adjuvant effects of low voltage pulses might consist
of increased activation and migration of the APCs,
higher transfection of relevant APCs, or increased cellu-
lar infiltration. The optimal conditions for DNA vacci-
nation, therefore, depend on the capacity of
electroporation to enhance cellular immunity, especially
for cancer vaccines for which IFNg producing CD8+ T
cells are critical. The requirements might be different
for the induction of humoral immune responses, for
which the induced gene expression level might be of
greater importance. Muscle is the most commonly

targeted tissue for vaccine delivery where gene expres-
sion may last in excess of six months. The dominant
mechanism for priming of CD8+ T cells by APCs, after
DNA vaccination, is still a matter of debate and may
vary depending on if DNA is delivered into the muscle
or the skin.
Despite these promising effects, the clinical efficiency

of the different immunotherapeutic strategies for the
majority of patients with advanced prostate cancer is
still limited owing to various immune evasion mechan-
isms mediated by tumours. One of the major challenges
in developing tumour vaccines relates to the fact that as
tumours grow, the immune system looses the ability to
target tumour cells, because of development of several
immune evading strategies. These mechanisms include
down-regulation of different components of the MHC
class I processing and presentation machinery, genera-
tion of antigen loss variants, production of inhibitory
cytokines such as transforming growth factor-ß and
IL10, and expression of apoptosis-inducing molecules
[50,51]. DNA vaccines, such as phPSA, have potential to
activate specific tumour protective immunity and have
potential to overcome these tumour escape mechanisms.
Hormone therapy and radiotherapy for prostate cancer
can have stimulatory effects on immune system [52,53].
Hence, a DNA vaccine such as phPSA has potential to
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be used in conjunction with available treatment for
prostate cancer. The translation of this vaccination in
clinical trials is further supported by the work of
Ottensmeier et al. [54]. They have shown that EP is a
potent method for stimulating humoral responses
induced by DNA vaccination (encoding PSMA) in pros-
tate cancer patients. It is hoped that prostate tumour
vaccines would be able to destroy tumour cells that
have survived hormone-blockade or radiotherapy.

Conclusions
In summary, we have evaluated a plasmid DNA vaccine
and shown that this phPSA vaccine can generate effec-
tive, durable tumour specific immune responses. The
four-dose regimen provided optimal tumour protection
and this was further enhanced by co-administration of
synthetic oligo CpG. Additionally, this in vivo EP
mediated vaccination is a safe and effective modality for
the treatment of prostate cancer and has potential to be
use as a neo-adjuvant or adjuvant therapy.
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