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Abstract

Background: Liver fluke can infect cattle and sheep, and is also emerging as a human pathogen in developing
countries. Cathepsin B (Cat B2) is a major cysteine protease secreted by the juvenile flukes. To enhance the immune
responses of Cat B2, the cDNA sequence was fused with four different DNA vaccine vectors. The induced cellular
and antibody responses were compared in vaccinated mice.

Methods: The following recombinant DNA vaccine constructs were constructed: empty vector VR1012 as negative
control, cytoplasmic construct pVR1012 Cat B2, secretory construct pVR1020 Cat B2, chemokine-fused construct
pMCP3 Cat B2 and lymph node targeting construct pCTLA-4 Cat B2. Plasmids were constructed using standard
procedures, and positive constructs screened and selected using restriction digestion analysis followed by sequence
analysis. The constructs were then tested in Cos-7 cells for in vitro expression, which was analysed using
immunoblotting. Subsequently, female BALB/c mice were immunised with DNA constructs as vaccines. Elicited
antibody responses were measured using ELISA. The ratio between IgG1 and IgG2a antibody responses was
estimated among different vaccine groups. IgG antibody avidity assay was performed and the relative avidity index
was calculated. The induced cytokine production from splenocytes of vaccinated animals was estimated using
ELISPOT.

Results: DNA vaccine constructs carrying Cat B2 were expressed in Cos-7 cell lines and encoded protein was
recognised using western blotting using rat anti- cathepsin B antibody. DNA vaccines elicited high Cat B2- specific
IgG, IgG1, IgE and also modest IgG2a antibody responses. Cat B2 specific IL-4 T cell responses were also observed in
Cat B2 vaccinated mice. The comparison of immunogenic potential in each of these constructs was demonstrated
as enhanced antibody responses on the lymph-node targeting vector pCTLA-4 Cat B2, the high antibody avidity of
chemo-attractant pMCP3 Cat B2 and stronger T cellular responses of non-secretory DNA vaccine pVR1012 Cat B2 in
vaccinated animals.

Conclusion: This study showed that the targeting DNA vaccine strategies enhanced specific immune responses to
juvenile fluke Cat B2. The results of our current study have demonstrated that a gene-based vaccine as an
immunotherapeutic approach to combat Fasciola infection may be feasible.
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Background
The liver flukes Fasciola hepatica and F .gigantica cause
an estimated 3.2 billion annual economic loss to the glo-
bal agricultural community [1]. Liver fluke disease (fas-
ciolosis) is an emerging human affliction, with an
estimated 2–4 million people infected and a further 16
million people at risk of infection [1]. Due to the emer-
gence of drug resistant strains and avoidance of chemical
residues in animal food products such as milk and meat,
vaccines are proposed as an alternative to current
chemotherapy for fasciolosis [1]. Juvenile and immature
stages of F. hepatica produce excretory and secretory
(ES) material and cathepsin B (Cat B) is found to be a
major part of the ES material [2,3]. The major action of
Cat B is found to be assisting in the excystment and
penetration of young flukes into intestinal peritoneal
and hepatic tissues of the host [3,4]. Cathepsin proteases
are purified from the ES products of immature F. hepat-
ica, but the production of sufficient quantities of pure
cathepsin is a time consuming and complicated. Cer-
tainly large quantities from tiny immature fluke are not
possible. To solve this issue, recombinant cathepsin ex-
pression is ideal choice for vaccine studies. In our previ-
ous study, Cat B2 was evaluated as a recombinant
protein vaccine, and shown to induce protective immune
responses in rats [5]. The key role of Cat B in the biol-
ogy of flukes has been demonstrated by its enzyme char-
acteristics, RNA interference (RNAi) and vaccination
studies, reviewed by Smooker and colleagues [6]. There-
fore, Cat B is proposed to be a potential vaccine candi-
date against fasciolosis.
DNA vaccinations have been progressively used as a

more attractive vaccine approach because they are cap-
able of directly transfecting dendritic cells, and can
stimulate both humoral and cellular immunity [7]. How-
ever, the generated specific antibody titres of DNA vac-
cination are generally observed to be far less than those
induced by protein vaccination [8]. DNA vaccinations
with Fasciola antigens have shown effectiveness of such
vaccines in evoking immune responses [9-15]. In order
to increase the antibody responses of DNA vaccines en-
coding antigen, a number of strategies have been
employed. The most popular strategies applied are
secretory and vaccine cytoplasmic vectors. For example,
secretory and cytoplasmic DNA encoding F. hepatica
glutathione S transferase, fatty acid binding protein and
cathepsin L5 was investigated in mouse trials, and the
encoded antigens evoked higher immune responses in
the secreted form [14,16].
Another strategy includes the use of chemokines that

improves the immunogenicity of poorly immunogenic
antigens by targeting them to antigen presenting cells
(APCs) via chemokine receptors [17]. MCP3 has been
evaluated by virology researchers as a chemo-attractant
of leukocytes [17]. Vaccination with constructs encoding
CTLA-4 fusion proteins (which bind to CD80/86 of
APC’s) can induce strong antibody responses and pro-
vides a novel generic DNA vaccine for the development
of therapies against a wide range of diseases [18-23].
Targeting of APCs by CTLA-4 encoding ovalbumin was
performed in pigs via gene gun delivery. This DNA vac-
cination induced an elevated antigen specific IgG, IgA,
IgG1 and IgG2 antibody responses in pigs [24]. CTLA-4
mediated targeting and CpG motifs enhance immuno-
genicity in a DNA prime/protein boost strategy in sheep
using Fasciola antigens [10].
The determination of specific IgG avidity in sera is

generally useful in parasitic and viral infections including
Fasciola [25], Trypanosoma cruzi [26], Rubella [27] and
Mumps [26] for differentiating the acute and chronic
stage of infection. The estimation of antibody avidity has
also been widely used for analysing the vaccine efficacy
of infectious diseases, where the stimulation of high
avidity antibodies is required [28-30]. The avidity index
(AI) is currently measured in vaccinated sera by ELISA
with one more extra step: disassociation of the antigen-
antibody complex with denaturing agents such as urea
or thiocynate [27,31,32].
In order to assess the immunogenic property of an

early and infective stage fluke secreting cysteine protease
as a vaccine candidate, the humoral and cellular immune
responses to various DNA vaccines encoding F. hepatica
cathepsin B protease were investigated. This panel of
constructs was analysed for in vitro expression with
COS-7 cells and in vivo with BALB/c mice via the intra-
muscular route.

Methods
Construction and purification of DNA vaccines encoding
Cat B2
Cloning of Cat B2 and the construction of DNA vaccines
was previously performed [2]. The coding region for
pro-cathepsin B2 was inserted into the DNA vaccines.
The constructs to be tested were as follows: secretion of
Cat B2 using the native signal peptide (pVR1012 Cat
B2), secretion of Cat B2 using the TPA signal peptide
(pVR1020 Cat B2), secretion of Cat B2 fused to murine
MCP3 (pMCP3 Cat B2) and secretion of Cat B fused to
murine CTLA4 (pCTLA-4 Cat B2). The DNA constructs
were purified from one litre of E. coli BL21 DE3 pLysS
(Novagen, USA) culture using an endotoxin free plasmid
Giga kit (Qiagen Australia). The purified DNA was
diluted in endotoxin free 0.9% saline solution at a con-
centration of 1 mg/ml.

COS-7 cell expression of Cat B2
The panel of constructs were examined for protein se-
cretion from COS-7 cells to confirm the functional
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expression of antigens. The expression and purification
of Cat B2 from S. cerevisiae BJ 3505 cells proceeded
according to Law et al. [2]. In vitro expression of Cat B2
was evaluated by transfecting COS-7 cells (a kind gift
from Kemperley Dynon, Melbourne University, Park-
ville) using the lipofectamineTm LTX reagent (Invitrogen
Australia). For each transfection, 4 μg of plasmid was
added to 100 μL of DMEM medium without newborn
calf serum (NCS) (Sigma-Aldrich Pty Ltd, USA) and
20 μL of lipofectamine LTX reagent. The mixture was
incubated for 5 minutes at room temperature and then
added to COS-7 cells. After incubation at 37°C for
24 hours, one mL of complex DMEM medium with
NCS (10%) was added. After incubating for a further
48 hours at 37°C, the cells were washed with PBS and
growth media without NCS and grown for a further
24 hours. After harvesting of COS-7 cells, the super-
natant was concentrated using an Amicon ultra filtration
unit and 20 μL of highly concentrated supernatant
and/or yeast expressed Cat B2 was used for western
blotting. Western blots were probed with rat anti-
cathepsin B antibodies (1:100) and followed by anti- rat
alkaline phosphatase (Invitrogen Australia) conjugated
secondary antibodies (1:100) and reactive antibodies
were visualised BCIP/NPT (Roche Diagnostics, Australia).

Cathepsin B2 protein expression
Fasciola hepatica is the source of yeast expressed cathe-
psin B2. Expression and purification of cathepsin B from
S. cerevisiae BJ 3505 cells proceeded according to Law
et al. [2]. pFLAG cathepsin B2 transformants were
grown at 28°C using shaking (120 rpm) in 10 mL min-
imal medium. After 72 hours growth, the cells were cen-
trifuged and the cell pellet was put into YPHSM
medium (one litre) and incubated with shaking at
120 rpm for 72 hours.

Immunization
Ethics approval to perform DNA vaccination in BALB/c
mice was obtained from RMIT University Animal Ethics
Committee, Melbourne, Australia. Groups of five 6–
8 week old BALB/c female mice were immunised with
VR1012 as the control, VR1012 Cat B2, VR1020 Cat B2,
MCP3 Cat B2 and CTLA-4 Cat B2 as vaccines. The
plasmid DNA was administrated three times at two
week intervals via an intramuscular injection to the
thigh region. Mice received 100 μg of DNA in 100 μL of
0.9% endotoxin free saline solution (50 μL each thigh)
on weeks 0, 2, 4. Mice were bled and sera were sampled
on weeks 4, 6, 8 and 10.

ELISA
The sterile ELISA plates (96 well) were coated with yeast
expressed Cat B2 at 5 μg/ mL in carbonate bicarbonate
buffer pH 9.6 and incubated overnight at 4°C. After
blocking, sera from individual mice were serially diluted
(1:100), loaded onto the plates and incubated at 37°C for
2 hours under gentle shaking. The bound antibodies
were detected using anti-mouse HRP conjugated IgG
antibody ((Sigma-Aldrich Pty Ltd, USA) (1:3000 dilu-
tion)), followed by the addition of 3’, 3’, 5’, 5’-
tetramethylbenzidine (TMB substrate, BD Pharmingen,
USA). The reaction was stopped by adding 2 M
sulphuric acid. Reciprocal titres were calculated as the
dilution that yielded an OD450 absorbance of 0.2.
For detection of antibody isotypes at week 10, biotin

conjugated rat anti-mouse IgE, IgG1 and IgG2a (BD
Pharmingen, USA) was added at 1:500 dilution and
incubated for one hour, followed by washing and the
addition of peroxidase-conjugated goat anti-rat IgG (at
1:500 dilution). The absorbance read at 450 nm on an
ELISA reader. The ratio between IgG1 and IgG2a anti-
body responses was also estimated to compare the
Th1/Th2 ratio among different vaccine groups.

Antibody avidity assay
An antibody avidity assay was performed as described
elsewhere [29,30] with the following modifications. Yeast
expressed Cat B2 (5 μg/mL) was used to coat 96 well
plates. The sera collected from individual mice were
added to all wells according to their antibody titre value
(OD450 absorbance of 0.2) and incubated for one hour
at 37°C, followed by the addition of an increasing con-
centration of urea to 0, 1, 2, 3, 4, 5, 6 and 7 M and fur-
ther incubation for 30 minutes at 37°C. The humoral
responses were assessed using anti-mouse HRP conju-
gate (Sigma-Aldrich Pty Ltd, USA) and developed as
described for the ELISA above. The relative avidity index
was calculated as the urea concentration required to re-
duce the binding percentage to 50%.

Elispot assay
Vaccinated mice were sacrificed at week 10. Spleens
were extracted from two animals in each group, crushed,
cells washed two times using RPMI medium and incu-
bated in ACK lysis buffer (0.15 M NH4Cl; 10 mM
KHCO3; 0.1 Mm Na2EDTA, pH 7.4) for 5 minutes. Cells
were washed in 1 mL RPMI medium and suspended at a
concentration of 1x 106 cells/90 μL. Methanol treated 96
well multi screen plates (Millipore) were coated with
100 μL of 5 μg/mL of anti-mouse interleukin-4 (IL-4)
overnight, followed by washing with PBS-Tween 20,
blocking with 5% skim milk in PBS for 2 hours and a
further washing step with PBS-Tween 20. Splenocytes
(1X106) were then added to each well. Splenocytes were
stimulated with 250 μg/mL of cathepsin B or concanava-
lin A (Sigma-Aldrich Pty Ltd, USA). Cultures were incu-
bated at 37°C in a 5% CO2 humidifier for 21 hours.
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Figure. 1 Diagrammatic representation of the DNA vaccine
constructs VR1012, VR1012 Cat B2, VR1020 Cat B2, MCP3 Cat
B2 and CTLA-4 Cat B2. The respective coding regions are detailed
as rectangles (Cat B2) and signal peptide as small rectangles. VR1012
Cat B2 has the native Cat B2 signal peptide. VR1020 Cat B2 has the
TPA signal peptide encoded in the vector. MCP3 Cat B2 and CTLA4
Cat B2 have their own signal peptides.
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Figure 2 Western blot detection of encoded proteins secreted
from COS-7 cells transfected with DNA vaccine vectors. Lane 1,
VR1012 transfected cell supernatant; lane 2, pre-stained protein
marker; lane 3, VR1012 Cat B2 cell supernatant; lane 4, VR1020 Cat B2
cell supernatant; lane 5, MCP3 Cat B2 cell supernatant; lane 6, CTLA4
Cat B2 cell supernatant; lane 7, yeast expressed Cat B as a positive
control.

Jayaraj et al. Genetic Vaccines and Therapy 2012, 10:7 Page 4 of 9
http://www.gvt-journal.com/content/10/1/7
Following washing with PBS, biotinylated rabbit poly-
clonal anti- IL-4 (BD Pharmingen, USA) in PBS was
added to wells and incubated at room temperature for
2 hours. After washing, strepavidin-alkaline phosphatase
(Sigma-Aldrich Pty Ltd, USA) was added and incubated
at room temperature for 1 hour. After washing three
times with PBS-Tween 20 and two washes with sterile
Milli Q water, ELISA substrate solution were added and
spots were counted using a dissection microscope.
Experiments were performed in triplicate and results
were expressed as the mean number of cytokine secret-
ing cells per 106 splenocytes.

Western blot
For assessing the Cat B2 specific antibodies in pooled
sera of vaccinated mice groups, Cat B2 was separated
(SDS-PAGE) and transferred to nitrocellulose mem-
branes. After blocking, the membrane was probed with
antisera (1:100 dilution) from all vaccinated groups and
then probed with anti-mouse alkaline phosphatase con-
jugated (1:2000 dilution) and then finally developed by
BCIP/NPT. Antisera were self raised antibodies in rats
vaccinated with Cat B2 (from our study, [33]).

Statistical analysis
Mean and standard deviation was calculated for the ana-
lyses of antibody titre, antibody avidity and ELISPOT
assays. The data were analysed using Graphpad Prism
(3.02 software, San Diego, USA). The association be-
tween paired and continuous, normally distributed data
were estimated using Wilcoxon test, whereas the Mann–
Whitney U-test was used for non-normally distributed
continuous data. Comparisons were considered to be
significant at P values of < 0.05.

Results
DNA vaccine purification and COS-7 cell expression
The constructs are depicted in Figure 1. Analysis of
western blots probed with Cat B2 specific rat sera
revealed the secretion of proteins from COS-7 cells in
each construct (Figure 2). Bands corresponding to pro-
Cat B2 were observed, and also the recognition of
36 kDa and 50 kDa fusion MCP3 or CTLA4- Cat B2
protein bands was observed. There was no reactivity
observed when COS-7 cells were transfected with
VR1012 as expected.

Humoral immune responses
Cat B2 specific antibody titres were induced in BALB/c
mice after vaccination with DNA vaccines (Figure 3).
Mean IgG antibody titres generated in mice immunised
with the CTLA-4-Cat B2 were significantly higher
(P < 0.05) than all other constructs at week 4. At week 6,
the mean antibody titre of VR1020 encoding Cat B2
vaccinated mice showed statistically significant higher
than the mice vaccinated with VR1012 Cat B2. There
was no significant difference between the mean titres of
any of the remaining test groups at weeks 6 and 8. How-
ever, at week 10 the mean antibody titres in CTLA-4
tagged Cat B2 vaccinated group was again higher than
the VR1012 Cat B2 and MCP3 Cat B2 groups (P< 0.01;
P< 0.05).
The panel of DNA vaccines induced relatively high

IgE and IgG1 responses, and modest IgG2a responses
(Figure 4). All Cat B2 encoding DNA vaccines showed a
statistically significant IgE antibody responses compared
to the control vaccine (P< 0.01). The same trend was
observed in specific IgG1 and IgG2a antibody responses
to Cat B2 encoding DNA vaccines (P< 0.05).
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Figure 3 Cat B2 specific IgG antibody responses in vaccinated mice at bi-weekly intervals from weeks 4 to 10 after the first
vaccination. At every time point, all vaccinated groups with Cat B2 encoding constructs showed enhanced antibody titres when compared with
control vectors P< 0.05).
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Avidity of IgG antibody responses
The rapid drop in antibody avidity observed for the
VR1012 group (ie: the negative control) reflects the
non-antigen specific nature of binding in this group
(Figure 4). MCP3 Cat B2 vaccinated mice sera showed
a higher percentage of binding to antigen as urea con-
centrations increased compared to other groups. This
showed that a higher urea concentration would be
required to disrupt Cat B2 /IgG interactions (> 7 M) in
the mice vaccinated with MCP3 Cat B2. The relative
avidity index of MCP3 Cat B2 vaccinated mice sera
were significantly higher than VR1012 Cat B2 and
VR1020 Cat B2 group (P < 0.05).

Immunoblotting
Sera from all groups vaccinated with Cat B2 constructs
were able to recognise the protein (Figure 5). No signal
was detected for control vaccine sera. In these semi-
quantitative blots, MCP3 and CTLA-4 construct showed
stronger reactivity than other vaccinated groups.

Cellular immune responses
Vaccination with all plasmids encoding Cat B2 induced a
highly significant increase in IL-4 cytokine secreting cells
(P< 0.005) compared to the control groups. as illustrated
in Figure 6. Interestingly, the native signal peptide carry-
ing construct (VR1012 cat B2) vaccinated mice produced
the highest level of IL-4 cytokine production. However,
there was no significant difference between the numbers
enumerated from any group vaccinated with a cathepsin
B encoding construct.

Discussion
This study demonstrates that delivery of the juvenile and
immature F. hepatica antigen Cat B2 via DNA vaccine
vectors induces humoral and cellular responses in
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BALB/c mice. Antigen availability for B cell priming is
an essential factor in designing DNA vaccinations for
the induction of humoral responses [34]. In DNA vac-
cination, small amounts of secreted protein would aid to
select B cells with high avidity [8]. The COS-7 transfec-
tion analysis with the panel of DNA vaccine vectors indi-
cated that in vivo expressed Cat B2 protein should be
secreted from cells and be available for the priming of B
cells.
There are a number of reports explaining the speed

and magnitude of IgG antibody induction in mice vacci-
nated with secretory vaccine vectors [13,35-38]. A previ-
ous report by Smooker et al. (2001) showed that after
DNA vaccination with constructs encoding liver fluke
antigens, IgG antibody responses peaked (1/2000) at
week 8 and remained high for 20 weeks. In this study,
constructs encoding liver fluke FABP only induce anti-
bodies when delivered in a form that will secrete FABP
from the host cell. Antigen availability for B cell priming
is an essential factor in designing DNA vaccinations for
the induction of humoral responses [18].
DNA vaccination with the VR1012 DNA vaccine en-

coding F. hepatica cathepsin L showed total IgG anti-
body titre increased by week 8 and attained a peak at
week 13 (1/2000) [16]. In a similar pattern, VR1012 en-
coding Cat B2 elicited IgG antibody responses that
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Figure 5 Western blot of yeast expressed Cat B2 protein
probed with pooled sera of vaccinated mice. Sera from mice
vaccinated with: Strip 1, VR1012; strip 2, VR1012 Cat B2; strip 3,
VR1020 Cat B2; strip 4, MCP3 Cat B2, strip 5, CTLA4 Cat B2 sera. The
individual strips contain See Blue pre-stained protein markers. Each
individual immunoblot shows reactivity except the control DNA
vaccinated sera.
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reached its peak antibody titre at week 10 in our study
(1/1500).
The kinetics of antibody induction was different be-

tween the four constructs, with CTLA-4 Cat B2 indu-
cing a strong response at the earliest time point
measured (4 weeks) compared to the three other con-
structs. Therefore it appears that the CTLA-4 fusion
construct generally induces titres faster than other
constructs, and induced a high antibody titre. This
confirms what has been seen in several studies [18,19]
as one of the major advantages of using CTLA-4 fu-
sion constructs is the early induction of immune
responses [19].
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Figure 6 Quantitative determination of IL-4 secreting spots (ELISPOTs
presented here. Each vaccine test group yielded significantly higher numbe
T cells).
In our experiments, the MCP3 construct did not in-
duce very high antibody responses and other studies
[38,39] have shown increased responses. The reason is
unknown, and is presumably related to the specific com-
bination of antigen and chemokine that is expressed.
MCP3 is supposedly acting in a similar way to CTLA-4
in delivering antigen to antigen presenting cells, but not
giving the expected increase. This confirms that CTLA-
4 is the superior targeting system in these experiments.
In our study, Cat B2 DNA vaccines induced very mod-

est IgG2a antibody response and dominant IgG1 and IgE
antibody responses. The dominant IgE antibody re-
sponse of cysteine proteases was observed in our previ-
ous study with F hepatica cathepsin L5 DNA
vaccination in mice [16]. The presence of Fasciola spe-
cific IgE antibody and eosinophil responses is a good in-
dicator of acquired immunity which has been
demonstrated elsewhere [40-42]. In a rat trial with re-
combinant cathepsin L, vaccination induced significantly
higher specific IgG1 antibodies in vaccinated groups
than in the control group [43].
One way of characterising antibody responses is to es-

timate the avidity of antibodies. Our results clearly show
the sharp drop in binding in the control group, which is
obviously reflective of non-specifically bound antibody.
Rainczuk et al. [30] tested the relative avidity of DNA
vaccines where malarial antigen MSP4-5 was fused with
MCP3 or CTLA-4 and found that the avidity of both
d mice groups
) in vaccinated groups. The mean and standard deviation are
rs of IL4 secreting cells than the control (P< 0.01) (SPF -spot forming
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these constructs were comparable. The relative avidity of
MCP3 Cat B2 induced antibodies were higher than those
induced by other vaccines, as inferred by a urea IgG
ELISA. MCP3 has been shown to bind to chemokine
receptors CCR1, CCR2, and CCR3 which are all
expressed on immune cells.
Generally, Th1 and Th2-associated responses in the

murine system are reflected by IgG2a and IgG1 isotypes
respectively [44]. Dendritic cells are crucial for proces-
sing and presenting antigens to stimulate naїve T lym-
phocytes, and also differentiate into a Th1 or Th2 T cell
responses which provide T cells with costimulatory sig-
nals, CD80/CD86 [45]. In a mouse study with experi-
mental Fasciola infection, spleen cells from BALB/c
exhibited a Th2 response, producing high levels of the
cytokines IL-4 and IL-5, and low levels of IFN-gamma
and IL-2. In contrast, C57BL/6 mice showed a mixed
Th1/Th2 response. The induction of IL4 by fluke infec-
tion in mice has been well documented by many groups
[46-49]. As stated above, the migratory juvenile and
adult liver fluke ES material elicits Th2 responses
[41,50].

Conclusion
In summary, our results confirmed that the juvenile
fluke antigen Cat B2 B can elicit cellular and humoral
responses when delivered as a DNA vaccine in a murine
model. Our results also indicated that exploring various
fusions of DNA vaccination strategies may be an effect-
ive approach to further enhance the potency cathepsin B
against challenge infection in animal models. We will
plan to expand this study in future with target animals,
cattle and sheep to see how the protection given by
these vaccine.
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