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Abstract

Background: For many promising target cells (e.g.: haematopoeitic progenitors), the susceptibility to standard
adeno-associated viral (AAV) vectors is low. Advancements in vector development now allows the generation of
target cell-selected AAV capsid mutants.

Methods: To determine its suitability, the method was applied on a chronic myelogenous leukaemia (CML) cell
line (K562) to obtain a CML-targeted vector and the resulting vectors tested on leukaemia, non-leukaemia,
primary human CML and CD34* peripheral blood progenitor cells (PBPC); standard AAV2 and a random capsid
mutant vector served as controls.

Results: Transduction of CML (BVI173, EM3, K562 and Lama84) and AML (HL60 and KGla) cell lines with the
capsid mutants resulted in an up to 36-fold increase in CML transduction efficiency (K562: 2-fold, 60% * 2% green
fluorescent protein (GFP)* cells; BV173: 9-fold, 37% £ 2% GFP* cells; Lama84: 36-fold, 29% + 2% GFP* cells)
compared to controls. For AML (KGla, HL60) and one CML cell line (EM3), no significant transduction (<1%
GFP* cells) was observed for any vector. Although the capsid mutant clone was established on a cell line, proof-
of-principle experiments using primary human cells were performed. For CML (3.2-fold, mutant: 1.75% + 0.45%
GFP* cells, p = 0.03) and PBPC (3.5-fold, mutant: 4.21% + 3.40% GFP* cells) a moderate increase in gene transfer
of the capsid mutant compared to control vectors was observed.

Conclusion: Using an AAV random peptide library on a CML cell line, we were able to generate a capsid mutant,
which transduced CML cell lines and primary human haematopoietic progenitor cells with higher efficiency than
standard recombinant AAV vectors.
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Background

Chronic myelogenous leukaemia (CML) represents about
15-20% of all cases of adult leukaemia in Western popu-
lations [1]. Currently, the most effective and best tolerated
drug against CML is imatinib mesylate (Gleevec® or
Glivec®, previously known as STI-571), a selective BCR-
ABL tyrosine kinase inhibitor [2]. However, resistance of
CML cell clones to imatinib mesylate remains a serious
clinical challenge [3-5]: over 5% of patients in early stage
CML do not achieve complete haematological remission.
Of those who do, a constant rate of 4%-6% per year suffer
the risk of relapsing [6]. In order to eliminate residual
resistant CML cells in patients, novel therapeutic options,
for instance gene therapy, have to be considered.

A potential approach would be the transfer of vectors con-
taining either suicide or immune-stimulating genes into
these cells. For a gene-based therapy of CML, most stand-
ard vector systems lack the required gene transfer effi-
ciency and/or the in vivo selectivity. An advancement in
vector development for the small parvovirus adeno-asso-
ciated virus (AAV) by Miiller and colleagues (suggested
reading [7]) now allows the generation of rAAV capsid
mutants that offer higher gene transfer efficiency and a
potentially higher target cell specificity. To this end, an
AAV random peptide library was used which displays a
random seven amino acid peptide sequence within the VP
capsid protein domain (at Arg588) that is normally
required for binding of AAV2 to one of its natural recep-
tors, heparan sulphate [8]. During the selection of the
AAV random peptide library on the target cells, mutants
with good binding characteristics to a target receptor are
able to transduce the cells, replicate and are propagated
during further selection rounds. These mutants may show
increased transduction efficiency on and/or increased spe-
cificity for the target cells, which has to be assessed in fur-
ther assays.

Recombinant viral vectors based on AAV exhibit several
beneficial features for gene therapy purposes, due to the
lack of pathogenicity, high virion stability and its rela-
tively low immunogenicity [9,10]. Although the primarily
extra-chromosomal residence of the virus makes them
unsuitable for long-term expression in rapidly dividing
tissues, it renders it highly favourable for "hit and run"
applications (e.g.: drug- or radio-resistance gene transfer
and especially gene correction by homologous recombi-
nation) in these cell types, without the potential dangers
associated with integration (insertional mutagenesis) and
long-term exposure to unphysiological transgene levels.

rAAV2 vectors have been used extensively in many clinical
and pre-clinical studies, including, for instance the treat-
ment of clotting factor disorders[11], cystic fibrosis [12]
and several types of cancer [13-15]. Attempts to efficiently
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transfer genes into primary human CML cells were pre-
vented by the low susceptibility of the target cells to the
vector (unpublished observations). Of note, in general the
susceptibility of primary human haematopoietic progeni-
tor cells seems to be highly dependent on both the pro-
genitor source (e.g.: G-CSF-mobilised peripheral blood
progenitor cells [16], bone marrow [17], cord blood [18])
and displays a high inter-patient/donor variability [17]. In
AAV binding experiments, Ponnazhagan and colleagues
[17] showed that the susceptibility or the lack thereof in
human haematopoietic progenitors highly correlates with
binding of the virus to and subsequent entry into the cell.
This suggests that binding of the virus to a suitable recep-
tor on the cell is a rate limiting step [19]. Since high gene
transfer efficiency is a prerequisite for any gene therapy
approach, methods by Muller and colleagues [7], as well
as a similar approach developed by another group [20]
may help to overcome this limitation by facilitating bind-
ing of AAV capsid mutant to other on primary human hae-
matologic progenitors available receptors and thus
allowing entry into these cells. Several groups have previ-
ously shown that incorporation of a variety of amino acid
sequences into the heparin-binding motif of the AAV2
capsid retargeted the vector to cells previously refractory
to the vector [21,22], yet often with low efficiency.

In this investigation, we determined the suitability of an
AAV random peptide library on a CML cell line for gener-
ating a more efficient and specific rAAV vector for the
transduction of leukaemia cell lines and primary cells.

Methods

Cells and cell culture

The embryonic kidney cell line 293T and the cervix carci-
noma line HeLa-RC [23] were kindly provided by Dr.
Kleinschmidt (DKFZ, Heidelberg, Germany) and main-
tained in Dulbecco's modified Eagle's medium (DMEM,
all media and supplements from Gibco Invitrogen Corpo-
ration, Karlsruhe, Germany) supplemented with 10% FCS
and 5 pg/ml penicillin/streptomycin. All other cell lines
were obtained from the tumour cell bank of the German
Cancer Research Center (Heidelberg, Germany). The leu-
kaemia cell lines (BV173, EM3, HL60, K562 and
Lama84), H-Mesol and RM-HS-1 cells were cultured in
Roswell Park Memorial Institute (RPMI) medium supple-
mented with 10% FCS and 5 pg/ml penicillin/streptomy-
cin. Primary human CML and peripheral blood
progenitor cells (PBPC) were provided by the Department
of Internal Medicine V (Heidelberg, Germany): CML cells
were isolated from peripheral blood of patients in blast
crisis phase, whereas PBPCs were obtained from leuka-
pheresis product of patients with non-myeloid malignan-
cies. Primary human cells were grown in Iscove's Modified
Dulbecco's Medium (IMDM), supplemented with 20 ng/
ml TPO, 100 ng/ml FL3 and 100 ng/ml SCF (SCF from
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Genzyme, Cambridge, MA, USA, TPO and FLT-3 from
R&D Systems, Minneapolis, MN, USA).

The investigation on viral gene transfer was approved by
the Ethical Committee of the Medical Faculty of the Uni-
versity of Heidelberg and informed consent was obtained
from each patient.

Selection and identification of K562-targeted AAV random

peptide library clones

For the selection (four rounds), an AAV random peptide
library, as described previously by Miiller and colleagues
[7], was used containing a random 7 amino acid sequence
inserted at Arg588 of the Cap gene (position 3967 of
AAV2). Within each round, cells were incubated with the
AAV random peptide library supernatant for 2 hours,
washed and co-infected with adenovirus (kindly provided
by the Dr. Balter, vector core of the university hospital of
Nantes, Nantes, France). After further incubation for 3
days, cells were harvested and three freeze-thaw cycles
were performed to extract the viral particles.

An aliquot of the supernatants of round 2-4 were purified
with Qiagen DNA purification kit (Qiagen, Hilden, Ger-
many) and served as a template for a the amplification of
the random peptide insert by PCR (Forward primer: 5'
CCT GTT ACC GCC AGC AGC GA-3', Reverse primer: 5'-
GGT GGC CGC CTG GGC-3").

PCR products were analysed by gel electrophoresis, the
PCR band was excised and purified with Qiagen gel puri-
fication KIT (Qiagen, Hilden, Germany). The purified
product was cloned in the TOPO pCR-4 vector and trans-
formed into OneShot® bacteria according to the manufac-
turer's instructions (Topo TA Cloning Kit, Invitrogen,
Carlsbad, CA, USA). Several colonies of each cloning reac-
tion were screened for insert by direct PCR of bacterial col-
onies (T3 and T7) and cycle sequencing of these was
performed using an ABI Prism Genetic Analyzer 310
(Applied Biosystems, Weiterstadt, Germany) according to
the manufacturer's instructions. Sequences were analysed
using the Chromas® (Technelysium, Tewantin, Australia)
and VectorNTI software (Invitrogen).

Production, purification and concentration of rAAV
particles

For production of the CML-targeted rAAV virus stocks, the
following plasmids were used: pMRV-Ef1a-hGFP (rAAV2
vector), several pMT187-xx2 (containing the wtAAV2
genome without ITRs) derivates containing the random
peptide inserts and pDGAVP (an rAAV2 helper plasmid
containing all genes required for rAAV2 production, but
lacking the Cap gene). Clone identity in the pMT187-xx2
plasmids was confirmed by cycle sequencing.
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For production of rAAV2 particles by transient plasmid
transfection, 3 x 106293T cells/dish were seeded in 10 cm
dishes (Becton-Dickinson, Heidelberg, Germany). At
40-70% confluency, cells were transfected with 3.5 pg
PMRV-EF1a-hGFP, 7 ug pDGAVP plasmid and 3.5 ug of
the pMT187-xx2 (containing the respective clone) using
the Metafectene transfection reagent (Biontex Laborato-
ries, Munich, Germany), according to the manufacturer's
conditions.

After 48 h, cells were harvested and subsequently lysed by
three cycles of freeze-thawing (-80 to 37°C). Lysates were
treated with 50 U/ml endonuclease (Benzonase; Sigma-
Aldrich) for 30 min at 37°C and centrifuged twice at 2000
g for 15 min to remove cellular debris.

The clear supernatant was subsequently filtered through a
5 and a 0.8 pm pore size filter (both Millipore, Eschborn,
Germany) and was then run over a iodixanol gradient,
using the procedure by Zholotukin and colleagues [24]. In
brief: the lysate was loaded on top of a 4-layer gradient
containing 15, 25, 40 and 60% iodixanol (Optiprep; Axis-
shield, Oslo, Norway), and run for 2 hours at 302,000 g
in a Beckman Ultracentrifuge (50.2 Ti; Beckman, Munich,
Germany). The 40% iodixanol layer containing the rAAV2
particles was recovered using a syringe with needle and
diluted in one volume of PBS-MK (PBS supplemented
with 1 mM MgCl, and 2.5 mM KCI). The virus stock was
aliquotted in 250 pl portions and stored at -80°C until
further use.

Functional and real-time quantitative PCR (RQ-PCR)
titration of rAAV2 batches

All rAAV2 stocks were titrated using both a functional and
a RQ-PCR titration method, as described previously by
Veldwijk et al. [25]. For titration of the AAV2 random pep-
tide library clones during selection, primers and probe
were modified to recognise a part of the wild type Rep
gene (forward primer: 5'-TTGCAAGACCGGATGTTCAAA-
3'; reverse primer: 5'-CITTCCTGCITGGTGACCTTCC-3'
and probe: 5'-ACTCACCCGCCGTCTGGATCATGAC-3').
Functional titration was performed as described previ-
ously [25].

Transduction

One day before transduction, cells were seeded into 24
well plates at a density of 2.5 or 5 x 104 cells/well in 300
ul of the respective medium. In all experiments cells were
transduced with either conventional rAAV2 or the CML-
targeted virus particles at a multiplicity of infection (MOI)
as described in the results section. Seventy-two hours after
infection, cells were harvested and analysed.
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Acquisition and analysis

For acquisition and analysis of the gene transfer data, a
FACSCalibur flow cytometer (Becton-Dickinson GmbH,
Heidelberg, Germany) equipped with an air-cooled 488
nm Argon laser was used. Data were processed using Cel-
lquest software (Becton-Dickinson). Before acquisition,
propidium iodide (10 pg/ml; Sigma-Aldrich, Munich,
Germany) was added to samples, to exclude dead cells
from analysis. Ten thousand events were acquired and
GFP was measured on the Fl1-channel and plotted against
side-scatter as described previously [26]. Primary CML
and CD34+ PBPC were further stained with anti-hCD45-
APC and anti-hCD34-PE labelled antibodies (both from
Becton-Dickinson GmbH). GFP and antigen expression
was measured against uninfected control cells, thereby
correcting auto fluorescence and unspecific fluorescence.
Mean fluorescence intensity (MFI) is given in arbitrary flu-
orescence units (afu). The GFP expression is given in per-
centages of GFP positive cells (compared to mock control
levels).

Fluoresence in situ hybridisation

Metaphase spreads of primary CML patient cells infected
with rAAV2 and CML-targeted rAAV2 vectors were pre-
pared by standard protocols. Two-colour FISH using a
commercial probe set for the BCR-ABL translocation
(QBiogene, Illkirch, France) was performed according to
the manufacturer's instructions. Images of 4 metaphase
spreads were acquired using a Leica DM RXA epifluores-
cence microscope (Leica, Bensheim, Germany) equipped
with a Sensys CCD camera (Photometrics, Tucson, AZ,
USA) and controlled by the Leica Q-FISH software (Leica
Microsystems Imaging Solution, Cambridge, UK). Slides
were destained and a ReFISH protocol described by
Miller et al. [27] was applied to allow multifluor in situ
hybridisation (M-FISH) of combinatorially labelled chro-
mosome painting probes [28]. Images of the same 4 met-
aphase spreads were evaluated and processed using the
Leica MCK software.

Statistics

Data are given as mean values + standard deviation. Sig-
nificance levels were determined using a two-sided
unpaired Student t test.

Results

Selection and identification of K562-targeted random
peptide library clones

To obtain K562-targeted AAV mutant capsid clones, an
AAV random peptide library was applied on the CML cell
line K562 as described in the "Material and Methods" sec-
tion. The selective properties of the random peptide
library procedure are based on the premise, that during
the selection rounds, more efficient clones subsequently
dominate less efficient ones (table 1). Those clones found
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Table I: Observed amino acid sequences of AAV capsid mutant
as observed during four screening rounds on K562 cells.

Selection round

Insert sequence 2nd 3rd 4th
GISPRAG 2 2 N
GVSGRPA 2 2 N
NESRVLS 2 2 2.
KDPVRAP N 2 3.
ASRPP 5 2 3.
EARVRPP N N 4.
NSVSLYT N N 5.
Others 8 7 1.
Total 19 17 18

The bolded clones EARVRPP and NSVSLYT were chosen for further
investigation. — clone not detected.

in the final round with the highest number of copies are
therefore regarded as the most efficient capsid mutants
obtained on the targeted K562 cell line. Since the inserted
amino acid sequences EARVRPP and NSVSLYT prevailed
after four selection rounds and together cover most of the
amino acid patterns observed, these were chosen. A ran-
dom computer-generated clone was also constructed, con-
taining the insert sequence SFPFVSS and named "random
clone" serving as a negative control in our study.

Transduction efficiency of K562-targeted random peptide
library clones on leukaemia cell lines

To validate the leukaemia targeting efficiency of the
selected clones for AAV-mediated gene transfer, four CML
(K562, BV173, Lama84, EM3) and two AML cell lines
(HL60, KG1a) were transduced with the two AAV library
clones (EARVRPP and NSVSLYT), the random clone and a
standard rAAV2 vector (Figure 1).

On the targeted cell line K562, a significant increase in
gene transfer efficiency of >2-fold (mutant: 60% + 2%
GFP+ cells; p < 0.001) compared to the standard rAAV2
and the random clone could be observed. To an even
higher extent (up to 36-fold), this was shown for the CML
cell lines BV173 and Lama84 (mutant: 37% + 2% and
29% + 2% GFP+ cells, respectively; for both: p < 0.001).

No significant gene transfer (<1% GFP+ cells) into the cell
lines EM3 (CML), KGla and HL60 (both AML) was
observed for neither the K562-targeted clones nor control
vectors (Figure 1).

Although the K562-targeted capsid mutant clone
EARVRPP was more efficient than K562 clone NSVSLYT
on any of the cell lines (by at least 2.5-fold), the latter was
still significantly more efficient on the CML cell lines
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Figure |

Gene transfer efficiency of the rAAV capsid mutants and control vectors on a panel of leukaemia cell lines (in % GFP* cells)
using an MOI of 100. Cell lines: BV173: CML blast crisis (lymphoid); EM3: CML blast crisis relapse; HL60: AML (M2); K562:
CML blast crisis (erythroid); KGla: AML (erythro-leukaemia); Lama84: CML blast crisis. Random = randomly generated capsid
mutant rAAV vector. Data are given as mean + SD (n > 3). * = rAAV capsid mutants significantly (p < 0.001) more efficient

than standard rAAV2. * = as *, but with p < 0.01.

BV173 (p < 0.01) and Lama84 (p < 0.001) compared to
the control vectors. Due to the superiority of the capsid
mutant clone EARVRPP during the leukaemia cell line
screenings and no detectable gene transfer by the K562-
targeted clone NSVSLYT in preliminary screenings of pri-
mary haematopietic cells, the latter was omitted from fur-
ther experiments.

For the random capsid mutant clone, in none of the leu-
kaemia cell lines significant gene transfer was observed
(<1% GEFP+ cells). Similar results were obtained using pri-
mary blood progenitors (data not shown).

Determining the specificity of the K562-targeted clones on
solid tumour cell lines

Although a significant increase in gene transfer efficiency
was found with the K562-targeted clone EARVRPP in
three of the leukaemia cell lines, no complete CML-specif-
icity could be observed in those experiments. In order to
further investigate the specificity of the targeted vectors, a
panel of three generally rAAV2-susceptible solid tumour
cell lines (HeLa-RC, H-Meso1 and RM-HS-1) [13,16,29]

were traFnsduced with the K562-targeted and control vec-
tors, and gene transfer efficiency (% GFP+ cells) as well as
expression level (MFI; mean fluorescence intensity) deter-
mined. Standard rAAV2 vectors were significant (for all
three lines: p < 0.01) more efficient than the rAAV capsid
mutants, although all three non-leukaemia cell lines
could readily be transduced with any of the vectors (table
2). Since on all cell lines a reduction in both %GFP+ cells
and MFI for the K562-targeted clone EARVRPP compared
to the standard rAAV2-treated cells could be observed, an
increase in leukaemia cell and a reduction in non-leukae-
mia cell specificity of the clone can be suggested.

Transduction of primary peripheral blood progenitor cells
(PBPC) and CML cells

After the promising results on a panel of leukaemia cell
lines showing the increase in gene transfer efficiency and
an increased specificity for the K562-targeted vector on
leukaemia cells, although not generated on primary
human progenitor cells, its efficiency on PBPCs (both leu-
kaemia and normal) was determined in proof-of-princi-
ple experiments. Therefore, peripheral blood from CML
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Table 2: Gene transfer efficiency of K562-targeted and standard rAAV2 vectors on solid tumour cells.

%GFP* cells MFI (AU)

Cell line EARVRPP rAAV2 EARVRPP rAAV2
RM-HS-1 46.01 + 10.82 97.61 +3.21 35.03 £ 12.93 395.64 £ 52.93
H-Mesol 76.42 £ 241 88.30 + 4.34 70.29 £ 9.54 150.89 + 23.22
Hela-RC 77.94 £ 6.60 9822 + |.21 3257 +7.73 143.49 + 12.21

A significant (p < 0.05; irrespective of cell line) superiority of the standard rAAV2 vector on three solid tumour cell lines could be shown for both

%GFP* cells and MFI. MFI: mean fluorescence intensity; AU: Arbitrary units.

patients and CD34-selected leukapheresis product from
patients with non-myeloid diseases were transduced
(both n > 4) with either the K562 clone EARVRPP or a
standard rAAV2 vector. Mock transduced sample served as
control. Although the AAV capsid mutant was established
onto a CML cell line, for both CML cells (%GFP+,,,:
0.54% + 0.29%; %GFP*_: 1.75% + 0.45%) and CD34+
PBPC (%GFP*,,,: 1.19% + 0.23%; %GFP*,_ .: 4.21% =
3.40%) an increase in gene transfer efficiency with the
K562 clone EARVRPP was observed compared to the
standard rAAV2 vector (Figure 2), which was significant
for the CML (p = 0.03) group. The identity of the trans-
duced CML cells was confirmed by multicolor FISH for
the BCR-ABL mutation of the CML cells (100%, data not
shown). For the normal human primary PBPC, an anti-
CD34 co-staining was performed to identify the CD34+/
GFP+ population.

8
; I
o 6
g5
N
& 4 0.03
p=0.
O3 f 1
=S
2 T
1
0,
CML PBPC
Figure 2

Gene transfer efficiency of the rAAV capsid mutant
(EARVRPP; ) and a standard rAAV2-based vector (L) on
primary human CML and CD34* PBPC (in % GFP* cells) using
an MOI of 100. Data are given as mean + SD (n > 4).

Discussion

In this study, a peripheral blood progenitor cell-targeted
rAAV2 vector was generated using an AAV random peptide
library on a leukemia cell line (K562), which was able to
transduce several leukaemia cell lines and primary human
blood cells with a significant higher efficiency than stand-
ard rAAV2 vectors.

Somatic gene transfer in human blood stem cells has been
investigated for over two decades, with mouse onco-retro-
viral vectors being the most efficient, followed by lentivi-
ral vectors more recently [30,31]. However, the
subsequent insertional mutagenesis-induced develop-
ment of leukaemia in patients treated with retroviral vec-
tors for severe combined immunodeficiency, although
successfully cured for the latter condition, put a spotlight
on the risk of those vectors [32]. The safety profile of len-
tiviral vectors under clinical settings is still unclear. Of
note: although theoretically rAAV-based vectors could
induce insertional mutagenesis, the probability is very
low due to their episomal residence.

Thus AAV-based vectors, which have not yet been associ-
ated with any disease, offer a promising alternative.
Although rAAV?2 vectors have been used for efficient trans-
duction in various cells and tissue types, and are used in
clinical trials [33-36], the transduction of primary human
CML cells or CD34+ PBPC had been hindered by the low
susceptibility of those cells. Some investigators had ini-
tially concluded that human haematopoietic stem cells
could not be transduced at all [16,26,37], whereas others
mentioned high vector-to-cell ratios as a prerequisite of
high gene transfer rates [38,39]. Data from several publi-
cations that could show detectable gene transfer into
blood stem cells suggest that the source (e.g: cord blood,
bone marrow, G-CSF-mobilised PBPC; human vs mouse)
of the cells seem to be of high relevance [18,40]. However,
most of the obstacles to AAV-mediated haematopoietic
stem cell gene transfer were elucidated by greater insight
into the life cycle of AAV, with AAV binding, entry
[8,41,42], intra cellular trafficking [43] and second-strand
DNA synthesis [44] as key issues.
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The goal of our study was to create an AAV-based vector
that can efficiently and selectively transduce haematopoi-
etic progenitor cells for further gene therapeutic applica-
tion (e.g.: radio-protection of PBPC [14] and suicide gene
transfer for the treatment of CML [29]). With the AAV ran-
dom peptide library, we address the AAV entry and bind-
ing mechanism, as we manipulate the capsid region
known for binding to the cell surface heparane sulfate
proteoglycan.

In order to test the suitability of the AAV random peptide
library for obtaining a more efficient and selective blood
progenitor cell-targeted rAAV vector, the CML cell line
K562 was chosen. The first step in our approach was to
select and identify K562-targeted clones. Although several
clones were successfully isolated during selection, the
yield of mutant inserts was hampered by wild type-like
AAV "insertless" clones (first generation AAV random pep-
tide library), which might explain why during selection
some clones were only observed in the last round without
prior appearance.

Using the rAAV capsid mutant clones on a panel of leu-
kaemia cell lines, an over 2-fold increase in gene transfer
over standard rAAV2-based vectors could be obtained on
the initially targeted K562 cells (Figure 1). On BV173 (9-
fold) and Lama84 (36-fold) this ratio was even higher.
Only the CML cell line EM3 seemed to be completely
refractory (<1%) to gene transfer with any of the vectors.
On both AML cell lines (KG1a and HL60), no improve-
ment in gene transfer compared to standard rAAV2 vectors
could be observed. These results not only imply a differ-
ence between the capsid mutants and the control vectors
on a genomic and phenotypic level, but also on a func-
tional level. The receptor expression of the target cells is of
high relevance. Apart from known AAV2 receptors, like
HSPG [8], the human fibroblast growth factor receptor 1,
avpB5 integrin [41,42] or hepatocyte growth factor recep-
tor, c-Met [45], novel binding moieties may be generated
on the vector capsid after its modification using the AAV
random peptide library.

The AAV capsid mutants showed pronounced specificity
for the screened target cells (a CML cell line); only one
CML line (EM3) showed no increase in gene transfer effi-
ciency of the capsid mutants compared to standard rAAV2
vectors. On a panel of non-haematopoietic cell lines, on
the other hand, all lines tested showed significantly
reduced gene transfer efficiency of the rAAV capsid
mutants compared to the standard rAAV2 vectors suggest-
ing altogether an increase in specificity towards haemat-
opoietic versus non-haematopoietic cells.

After the tumour cell lines, the vectors were tested — as a
proof-of-principle - on primary human CML and primary

http://www.gvt-journal.com/content/6/1/12

CD34+ PBPC. On these, higher gene transfer rates of the
rAAV capsid mutants than conventional rAAV2 vectors
were observed, which is of note, since the capsid mutants
were generated on a cell line. Applying the AAV random
peptide library on the primary cells, a potentially higher
gene transfer efficiency into primary cells would be
expected from the thereby obtained rAAV capsid mutants.
A further interesting observation was the high inter-
patient variability observed with the capsid mutants on
CD34+ PBPC, which has been previously observed by
Ponnazhagan and colleagues [17] using standard rAAV2
vectors on primary human bone marrow-derived blood
progenitors.

Conclusion

In summary, an AAV capsid mutant clone could be estab-
lished on a CML cell line, which was more efficient on
both leukaemia cell lines and primary human haemat-
opoietic progenitors than standard rAAV2-based vectors.
Although our results on primary human blood progenitor
cells do not warrant clinically relevant gene transfer levels,
the increase in gene transfer efficiency in both human
leukemia cell lines and primary progenitors show that the
AAV random peptide library holds promise for the gener-
ation of more efficient and selective rAAV-based vectors.
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