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Abstract
Background: Hepatitis C core protein is an attractive target for HCV vaccine aimed to
exterminate HCV infected cells. However, although highly immunogenic in natural infection, core
appears to have low immunogenicity in experimental settings. We aimed to design an HCV vaccine
prototype based on core, and devise immunization regimens that would lead to potent anti-core
immune responses which circumvent the immunogenicity limitations earlier observed.

Methods: Plasmids encoding core with no translation initiation signal (pCMVcore); with Kozak
sequence (pCMVcoreKozak); and with HCV IRES (pCMVcoreIRES) were designed and expressed
in a variety of eukaryotic cells. Polyproteins corresponding to HCV 1b amino acids (aa) 1–98 and
1–173 were expressed in E. coli. C57BL/6 mice were immunized with four 25-g doses of
pCMVcoreKozak, or pCMV (I). BALB/c mice were immunized with 100 g of either pCMVcore,
or pCMVcoreKozak, or pCMVcoreIRES, or empty pCMV (II). Lastly, BALB/c mice were immunized
with 20 g of core aa 1–98 in prime and boost, or with 100 g of pCMVcoreKozak in prime and
20 g of core aa 1–98 in boost (III). Antibody response, [3H]-T-incorporation, and cytokine
secretion by core/core peptide-stimulated splenocytes were assessed after each immunization.

Results: Plasmids differed in core-expression capacity: mouse fibroblasts transfected with
pCMVcore, pCMVcoreIRES and pCMVcoreKozak expressed 0.22 ± 0.18, 0.83 ± 0.5, and 13 ± 5 ng
core per cell, respectively. Single immunization with highly expressing pCMVcoreKozak induced
specific IFN- and IL-2, and weak antibody response. Single immunization with plasmids directing
low levels of core expression induced similar levels of cytokines, strong T-cell proliferation
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(pCMVcoreIRES), and antibodies in titer 103(pCMVcore). Boosting with pCMVcoreKozak induced
low antibody response, core-specific T-cell proliferation and IFN- secretion that subsided after the
3rd plasmid injection. The latter also led to a decrease in specific IL-2 secretion. The best was the
heterologous pCMVcoreKozak prime/protein boost regimen that generated mixed Th1/Th2-
cellular response with core-specific antibodies in titer  3 × 103.

Conclusion: Thus, administration of highly expressed HCV core gene, as one large dose or
repeated injections of smaller doses, may suppress core-specific immune response. Instead, the
latter is induced by a heterologous DNA prime/protein boost regimen that circumvents the
negative effects of intracellular core expression.

Background
Globally, an estimated 170 million people are chronically
infected with hepatitis C virus (HCV), and 3 to 4 million
persons are newly infected each year [1,2]. The human
immune system has difficulties in clearing the virus in
either the acute, or chronic phase of the infection with up
to 40% of patients progressing to cirrhosis and liver fail-
ure [3-6]. Extensive studies have unraveled important reli-
able correlates of viral clearance [7-11]. This, together
with the growing need to diminish the magnitude of HCV
associated liver disease served as a basis for intensive HCV
vaccine research. A series of HCV vaccine candidates have
moved into clinical trials [11]. One such is the peptide
vaccine IC41 consisting of a panel of MHC class I and
class II restricted epitopes adjuvanted by poly-L-arginine
administered to healthy volunteers [12] and to chronic
HCV patients including non-responders to the standard
therapy [13,14]. Another therapeutic vaccine employed
peptides chosen individually for their ability to induce the
strongest in vitro cellular response [15]. In a further vac-
cine trial, chronic hepatitis C patients received the recom-
binant HCV envelope protein E1 [16]. The first clinical
trial of an HCV DNA vaccine consisting of a codon-opti-
mized NS3/4A gene administered to chronic hepatitis C
patients is currently ongoing (CHRONVAC-C®; http://
www.clinicaltrials.gov/ct2/results?term=NCT00563173;
http://www.bion.no/moter/Vaccine/
Matti_S%E4llberg.pdf).

So far, none of the peptide or protein vaccines were able
to induce a significant improvement in the health condi-
tions of chronic HCV patients, or a significant decrease of
HCV RNA load, specifically if compared to the conven-
tional IFN-based therapy [13,15,16]. The vaccine trials
have, however, demonstrated that when achieved, HCV
RNA decline in the vaccine recipients correlates with
induction of strong IFN-gamma T-cell response [13]. Such
a response can best be recruited by DNA vaccines, either
alone or with the aid of heterologous boosts [11,17].
Indeed, vaccination of chimpanzees showed the ability to
elicit effective immunity against heterologous HCV strains
using T-cell oriented HCV genetic vaccines that stimulated
only the cellular arm of the immune system [17,18].

An attractive target for HCV vaccine is the nucleocapsid
(core) protein [19-21]. It is highly conserved among vari-
ous HCV genotypes with amino acid homology exceeding
95% [21,22]. Core binds and packages the viral genomic
RNA, regulates its translation [23-26] and drives the pro-
duction of infectious viruses [27-29]. Core contributes to
HCV persistence also indirectly by interfering with host
cell transcription, apoptosis, lipid metabolism, and the
development of immune response [30-33]. Extermination
of core expressing cells and inhibition of the activity of
extracellular core (non-enveloped particles containing
HCV RNA [34]) could be highly beneficial.

Ideally, HCV core could be eliminated by a specific vac-
cine-induced immune response. It is a strong immunogen
with anti-core immune response evolving very early in
infection [35,36]. Early and broad peripheral and intrahe-
patic CD8+ T-cell and antibody response to core/core
epitopes is registered in chimpanzees controlling HCV
infection HCV, but not in chimpanzees that become
chronically infected [37-39]. In mice, potent experimen-
tally induced anti-core immune response conferred par-
tial protection against challenge with core expressing
recombinant vaccinia virus [40]. However, despite high
immunogenicity in the natural infection, core does not
perform well as an immunogen, specifically if introduced
as naked DNA [2,41-43]. Attempts to enhance core immu-
nogenicity by targeting HCV core protein to specific cellu-
lar compartments [44], co-immunization with cytokine
expressing plasmids [2,41], adjuvants as CpG [45], or
truncated core gene versions [46] had limited or no suc-
cess.

Prime-boost strategies have been used to increase
immune responses to a number of DNA vaccines. Immu-
nization regimens comprised of a DNA prime and a viral
vector boost for instance for vaccinia virus [47,48], aden-
ovirus [49], fowlpox [50,51], and retrovirus [52]. Priming
with DNA and boosting with protein is another promising
approach. This regimen has been studied for HIV [53,54],
hepatitis C virus [55,56], anthrax [57], Mycobacteria
[58,59], Streptococcus pneumoniae [60] and BVDV [61].
DNA vaccines and recombinant protein vaccines utilize
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different mechanisms to elicit antigen-specific responses.
Due to the production of antigen in transfected cells of the
host, a DNA vaccine induces robust T-cell responses,
which are critical for the development of T-cell-dependent
antibody responses [62]. DNA immunization is also
highly effective in priming antigen-specific memory B
cells. In contrast, a recombinant protein vaccine is gener-
ally more effective at eliciting antibody responses than
cell-mediated immune responses and may directly stimu-
late antigen-specific memory B cells to differentiate into
antibody-secreting cells, resulting in production of high
titer antigen-specific antibodies [63]. Therefore, a DNA
prime plus protein boost is a complementary approach
that overcomes each of their respective shortcomings. Cer-
tain improvement of the immune response was reached
after co-delivery of HCV core DNA and recombinant core
[2,40,64]. In this study, we have shown that in DNA
immunization, poor core-specific immune response can
be a consequence of high levels of intracellular core
expression, and that such a response can be improved by
using low-expressing core genes, or single core gene
primes in combination with recombinant core protein
boosts.

Methods
Plasmids for expression of HCV core
Region encoding aa 1–191 of HCV core was reverse-tran-
scribed and amplified from HCV 1b isolate 274933RU
(GeneBank accession #AF176573) [65] using oligonucle-
otide primers: sense GATCCAAGCTTATGAGCAC-
GAATCC and antisense
GATCCCTCGAGTCAAGCGGAAGCTGG containing rec-
ognition sites of HindIII and XhoI restriction endonucle-
ases. The amplified DNA was cleaved with HindIII/XhoI
and inserted into pcDNA3 (Invitrogen, USA) cleaved with
HindIII/XhoI resulting in pCMVcore. Region encoding aa
1–191 of HCV core was also reverse-transcribed and
amplified from HCV isolate 274933RU using another set
of primers that carried Kozak consensus sequence sense
AGCTGCTAGCGCCGCCACCATGAGCACGAATCCT and
antisense GATCGTTAACTAAGCGGAAGCTGGATGG
primers containing recognition sites of restriction endo-
nucleases NheI and XhoI, respectively. The amplified
DNA was cleaved with NheI/KspAI and inserted into the
plasmid pCMVE2/p7-2 [66] cleaved with NheI/XhoI,
resulting in pCMVcoreKozak. The region corresponding
to HCV 5'UTR, and coding sequences for aa 1–809 was
reverse-transcribed and amplified from HCV 1b isolate
AD78P1 (GeneBank accession #AJ132997) [67], kindly
provided by Prof. M. Roggendorf (Essen, Germany) using
sense-GACCCAAGCTTCGTAGACCGTGCACCAT and
antisense CATGCTCGAGTTAGGCGTATGCTCG primers.
The amplified DNA was cleaved with HindIII/XhoI and
inserted into pcDNA3 cleaved with HindIII/XhoI result-
ing in pCMVcoreIRES. HCV 274933RU core differed from

HCV AD78P1 core in positions 70 (H versus R), 75 (T ver-
sus A), and 147 (V versus T), respectively.

Growth of pcDNA3, pCMVcore, pCMVcoreKozak, and
pCMVcoreIRES was accomplished in the E. coli strain
DH5alpha. Plasmid DNA was extracted and purified by
Endo Free plasmid Maxi kit (Qiagen GmbH, Germany).
The purified plasmids were dissolved in the phosphate
buffered saline (PBS) and used for in vitro expression
assays and for DNA immunization.

Cell transfection, lysis and Western-blotting
BHK-21, COS-7, and NIH3T3 cells were seeded into plates
(3 × 105 cells/well) and transfected by plasmid DNA (2
g) using Lipofectamine (GIBCO-BRL, Scotland) or
ExGen 500 (Fermentas, Lithuania) as described by the
manufacturers. HCV core expression was analyzed 24, 48
and 72 h post transfection. Cells were lysed for 10 min at
0°C in the buffer containing 50 mM Tris-HCl, pH 7.5, 1
mM EDTA, 1 mM PMSF and 1% NP-40. Lysates were
cleared by 10 min centrifugation at 6000 g, resolved by
12% SDS-PAAG, and transferred to PVDF membranes
(Amersham Pharmacia Biotech, Ireland). HCV core
expression was detected by immunostaining with polyclo-
nal rabbit anti-core antibodies [68], and secondary horse-
radish peroxidase (HRP)-conjugated anti-rabbit
immunoglobulins (Amersham Pharmacia Biotech, Ire-
land) followed by ECL™ detection (ECL Plus, Amersham
Pharmacia Biotech, Ireland).

Quantification of core expression in mouse cells
NIH3T3 cells were transfected with either pcDNA3, pCM-
Vcore, pCMVcoreKozak, pCMVcoreIRES, or pEGFP-N1
(Clontech, CA, USA). The percent of transfection was eval-
uated by counting the number of GFP expressing cells per
500 transfected NIH3T3 cells using a fluorescence Leica
DM 6000 microscope (Leica Camera AG, Germany). Cells
were harvested 48 h post-transfection, counted, and 104

cells were lysed in 2× SDS Sample buffer. Lysates and sam-
ples containing 1 to 50 ng of recombinant core aa 1–173
(corresponding to p21) were run simultaneously on 12%
SDS-PAAG and transferred onto PVDF membrane for cal-
ibration. Blots were blocked overnight in PBS-T with 5%
non-fat dry milk, stained with polyclonal anti-core anti-
bodies #35-6 (1:5000) followed by the secondary anti-
rabbit HRP-conjugated antibodies (DAKOPatts AB, Den-
mark). Signals were detected using the ECL™ system
(Amersham Pharmacia Biotech, Ireland). X-ray films were
scanned, and processed using Image J software http://
rsb.info.nih.gov/ij. The data are presented as the Mean
Grey Values (MGV). The core content was quantified by
plotting the MGV of each sample onto a calibration curve
prepared using recombinant core aa 1–173. After core
detection, blots were striped according to the ECL proto-
col and re-stained with monoclonal anti-tubulin antibod-
Page 3 of 17
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF176573
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ132997
http://rsb.info.nih.gov/ij
http://rsb.info.nih.gov/ij


Genetic Vaccines and Therapy 2009, 7:7 http://www.gvt-journal.com/content/7/1/7
ies (Sigma, USA) and secondary anti-mouse HRP-
conjugated antibodies (DAKOPatts AB, Denmark). Core
content per transfected cell was evaluated after accounting
for the percent of transfection and normalization to the
tubulin content per well.

Immunofluorescence staining
BHK-21 cells were seeded on the chamber slides (Nunc
International, Denmark) and transfected as above. 24 h
post transfection, the slides were dried, fixed with acetic
acid and ethanol (1:3) for 15 min and rinsed thoroughly
in distilled water. Fixed cells were re-hydrated in PBS, and
incubated for 24 h at 4°C with anti-HCV core rabbit pol-
yclonal antibodies (1:50) in the blocking buffer (PBS with
2.5 mM EDTA and 1% BSA). Secondary antibodies were
goat anti-rabbit immunoglobulins labeled with TRITC
(1:200; DAKO, Denmark). Slides were then mounted
with PermaFluor aqueous mounting medium (Immunon,
Pa., USA) and read using a fluorescence microscope.

Recombinant HCV-core proteins and core-derived 
peptides
Peptides covering core amino acids 1–18, 1–20, 23–43,
34–42, 133–142 and a control peptide TTAVPWNAS from
gp41 of HIV-1 were purchased from Thermo Electron
GmbH (Germany). Core proteins representing aa 1–152
of HCV 274933RU and aa 1–98, and 1–173 of AD78P1
were expressed in E. coli and purified by chromatography
as was described earlier [69,70]. Purified proteins were
dissolved in PBS.

Mice and immunization
The following immunizations were performed:

Scheme I
Groups of 12 female 8-week old C57BL/6 mice (Stol-
bovaya, Moscow Region, Russia) were immunized with a
total of 100 g of pCMVcoreKozak, or empty vector, split
into four i.m. injections done with 3–4 week intervals.
Control mice were mock-immunized with PBS.

Scheme II
Female 6–8 week old BALB/c mice (Animal Breeding Cen-
tre of the Institute of Microbiology and Virology, Riga)
had injected into their Tibialis anterior (TA), 50 l of 0.01
mM cardiotoxin (Latoxan, France) in sterile 0.9% NaCl
five days prior to immunization. Groups of 6 to 7 mice
were immunized with a single 100 g dose of either pCM-
VcoreIRES, or pCMVcore, or pCMVcoreKozak, or empty
vector, all dissolved in 100 l PBS, applied intramuscu-
larly (i.m.) into the cardiotoxin-treated TA. Control mice
were left untreated.

Scheme III
Groups of 5 to 6 female 6–8 week old BALB/c mice pre-
treated with cardiotoxin, were injected i.m. with 100 g of
pCMVcoreKozak and boosted three weeks later with 20 g
of core aa 1–98 in PBS, or primed and boosted subcutane-
ously with 20 g of core aa 1–98 in PBS. Control animals
were left untreated.

ELISA
Mice were bled from retro-orbital sinus prior to, and 2 to
3 weeks after each immunization, or 5 weeks post a single
gene immunization (in Scheme II). Peptides correspond-
ing to core aa 1–20, 23–43 or 133–142 were coated onto
96-well MaxiSorp plates (Nunc, Denmark), and recom-
binant core aa 1–98, 1–152, or 1–173, on the 96-well
PolySorp plates (Nunc, Denmark). Coating was done
overnight at 4°C in 50 mM carbonate buffer, pH 9.6 at
antigen concentration of 10 g/ml. After blocking with
PBS containing 1% BSA for 1 h at 37°C, serial dilutions of
mouse sera were applied on the plates and incubated for
an additional hour at 37°C. Incubation was followed by
three washings with PBS containing 0.05% Tween-20.
Afterwards, plates were incubated with the horseradish
peroxidase-conjugated anti-mouse antibody (Sigma,
USA) for 1 h at 37°C, washed, and substrate OPD (Sigma,
USA) added for color development. Plates were read on
an automatic reader (Multiscan, Sweden) at 492 nm.
ELISA performed on plates coated with core aa 1–98, 1–
152, or 1–173 showed similar results (data not shown).
Immune serum was considered positive for anti-core anti-
bodies whenever a specific OD value exceeded, by at least
two-fold, the signals generated by: pre-immune serum
reacting with core-derived antigen, and by immune serum
reacting with BSA-coated plate, the assays performed
simultaneously.

T-cell proliferation assay
For T-cell proliferation tests, mice were sacrificed and
spleens were obtained two weeks after each immuniza-
tion in Scheme I; and three and five weeks after the last
immunization in Schemes II and III. Murine splenocytes
were harvested using red blood cell lysing buffer (Sigma,
USA), single cell-suspensions were prepared in RPMI
1640 supplemented with 2 mM L-Glutamine and 10%
fetal calf serum (Gibco BRL, Scotland) at 6 × 106 cells/ml.
Cell were cultured in U-bottomed microculture plates at
37°C in a humidified 5% CO2 chamber (Gibco, Ger-
many). Cell stimulation was performed with peptides rep-
resenting core aa 1–20, 23–43, 34–42 and recombinant
core aa 1–98, 1–152, and aa 1–173 at dilutions to 3.1,
6.25, 12.5, 25.0, 50.0, and 100 g/ml, all in duplicate.
Concanavalin A (ConA) was used as a positive control at
2 g/ml. Cells were grown for 72 h, after which [3H]-thy-
midine (1 Ci per well; Amersham Pharmacia Biotech,
Ireland) was added. After an additional 18 h, cells were
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harvested onto cellulose filters and the radioactivity was
measured on a beta counter (Beckman, USA). The results
were presented as stimulation indexes (SI), which were
calculated as a ratio of mean cpm obtained in the presence
and absence of a stimulator (protein or peptide). Empty-
vector immunized and control mice showed SI values of
0.8 ± 0.4. SI values  1.9 were considered as indicators of
specific T-cell stimulation.

Quantification of cytokine secretion
For detection of cytokines, cell culture fluids from T-cell
proliferation tests were collected, for IL-2 – 24 h, and for
IL-4 and IFN- – 48 h post the on-start of T-cell stimula-
tion. Detection of cytokines in the cell supernatants was
performed using commercial ELISA kits (Pharmingen, BD
Biosciences, CA, USA) according to the manufacturers'
instructions.

Results
Cloning and expression
Plasmids were constructed encoding core of HCV 1b iso-
late 274933RU without translation initiation signals
(pCMVcore); and with Kozak translation initiation signal
(pCMVcoreKozak). Core with viral translation initiation
signal IRES taken in the natural context was derived from
HCV 1b isolate AD78P1 [67]. Viral cores had a minimal
sequence difference in positions 70, 75, and 147, all three
cases representing homologous substitutions.

Expression from these plasmids was tested both in vitro
and in cell cultures. Plasmids pCMVcore and pCMVcore-
Kozak were used as the templates for the T7-driven mRNA
transcription; mRNA was translated in vitro in the rabbit
reticulocyte lysate system. Both mRNAs generated a trans-
lation product of approximately 23 kDa corresponding to
the molecular mass of unprocessed HCV core (p23; data
not shown). Next, core-expressing vectors were used to
transfect a series of mammalian cell lines. Western blot-
ting of BHK-21 and COS-7cells transfected with pCMV-
core, pCMVcoreKozak and pCMVcoreIRES using core-
specific antibodies demonstrated an accumulation of pro-
teins with the expected molecular mass of 21 kDa that cor-
responds to core aa 1–171 cleaved from the full-length
core by cellular proteases [71,72] (Fig. 1). Minimal
amounts of p23 were also detected, specifically after trans-
fections of BHK-21 with pCMVcore and pCMVcoreIRES
(Fig. 1). The overall level of HCV core synthesis in BHK-
21 cells was somewhat higher than in COS-7 cells (Fig. 1).
In both cell lines, the highest level of core expression was
achieved with pCMVcoreKozak (Fig. 1, 2). All cells
expressing core and immunostained with core-specific
antibodies demonstrated cytoplasmic granular staining
characteristic of the processed p21 form of HCV core [72-
74] (Fig. 2).

The expression capacity of the vectors was quantified in
murine fibroblasts to reproduce DNA immunization that
was to be done in mice. Core expression was assessed on
Western blots of SDS-PAAG resolving lysates of NIH3T3
transfected with core expressing and control plasmids
(Fig. 3A and 3B). Images of Western blots were processed
using the ImageJ software and individual bands were rep-
resented in arbitrary units (Mean Grey Values, MGV).
Their correspondence to core quantity was established
using calibration curves built with the use of recombinant
core aa 1–173 (see Additional file 1) after normalization
to the percent of transfection and protein content of the
samples. Plasmid pCMVcore with no translation initia-
tion signals provided the lowest level of core expression
(Fig. 3B). IRES promoted a two-fold increase, and the
Kozak sequence, a 35-fold increase of core expression
with > 15 ng of protein produced per expressing cell (Fig.
3B).

Immunization of mice with HCV core DNA
All plasmids were purified by standard protocols in
accordance with a GLP practice for preparation of DNA
vaccines, and used in a series of mouse immunization
experiments.

HCV core DNA in priming and boosts
Plasmid directing the highest level of core expression was
selected and a pilot experiment defining the strategy of
DNA immunization was performed. C57BL/6 mice were
immunized four times with 25 g of pCMVcoreKozak,
and core-specific antibody and cellular responses were
evaluated. No specific response was registered after the 1st

injection (data not shown). The immune response gener-
ated after the following three boosts is illustrated by Fig.
4. Three injections of 25 g led to no increase of core-spe-
cific IgG response over the initial levels achieved after the
first two plasmid injections (Fig. 4A). Three plasmid injec-
tions generated a better T-cell proliferative response to
core and core-derived peptides than two. However, the
response could not be boosted further (Fig. 4B). IFN- and
IL-2 response to core was also boostable. However again,
no boosting was seen after the initial two pCMVcoreKo-
zak injections (Fig. 4C). Furthermore, the repeated injec-
tions led to a significant decrease of IL-2 secretion in
response to splenocyte stimulation by recombinant core
and peptides representing core N-terminus (p < 0.05; Fig.
4B, and data not shown). Core-specific IL-4 secretion was
not detected.

Thus, the development of core-specific immune responses
occurred within six weeks after the on-start of immuniza-
tion; repeated boosts with HCV core gene did not lead to
a significant enhancement of core-specific immunity.
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HCV core DNA as a single injection
In the next series of experiments, we selected BALB/c mice
as a strain that is expected to support a better Th2-type
response with stronger antibody production [75]. Plasmid
pCMVcore Kozak was given as a single 100 g injection
with the effect of repeated intramuscular DNA boosts sub-
stituted by pre-treatment of the injection sites by cardio-
toxin [76]. T-cell proliferative response, antibody
production and cytokine secretion were monitored two
and five weeks after immunization.

Significant responses in the form of core-specific IFN-
and IL-2 secretion exceeding the background levels in
empty-vector-immunized mice were detected five weeks
after a single administration of HCV core gene (Fig.5).
Immunization generated no core-specific T-cell response
and a low titer of core-specific IgG. Antibody response
against HCV core has already been shown to develop
slowly [46], mirroring the development of anti-core anti-
body response in HCV infected individuals [77]. Here as
well, a slow increase in the level of anti-core antibodies

Expression of HCV core proteinsFigure 1
Expression of HCV core proteins. Expression of HCV core protein directed by pCMVcore (A), pCMVcoreKozak (B), 
pCMVcoreIRES (C) in COS-7 cells 72 h post-transfection (Field 1); in BHK-21 cells 48 h (Field 2) and 72 h post transfection 
(Field 3). Transfection with the recommended amount (lane 1), and two-fold excess of transfection reagent (lane 2).
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Immunocytochemical detection of HCV core proteinsFigure 2
Immunocytochemical detection of HCV core proteins. Immunocytochemical detection of HCV core expression after 
transfection of BHK-21 cellswith pCMVcore (A1–C1), pCMVcoreKozak (A2–C2, C4), pCMVcoreIRES (A3–C3); nontrans-
fected BHK-21 cells (A4). Immunostaining for HCV core protein using rabbit polyclonal anti-HCVcore antibody 35-7 as pri-
mary and TRITC-conjugated anti-rabbit immunoglobulin (IgG) as secondary antibody (panel A); nuclear staining by DAPI (panel 
B); overlay of A and B (panel C); negative control (nontransfected BHK-21 cells) after staining (A4). Fluorescent images A1–4, 
B1–3, C1–3 and A4 were taken with Leica DM 6000 B microscope and a Leica DFC 480 camera, and confocal image of cells 
transfected with pCMVcoreKozak and showing cytoplasmic, granular distribution (C4) with a Leica TCS SP2 SE.
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Expression of proteins in mouse fibroblasts NIH 3T3 48 h post-transfectionFigure 3
Expression of proteins in mouse fibroblasts NIH 3T3 48 h post-transfection. A calibration curve was prepared using 
recombinant core protein aa 1–173 loaded in amounts of 25, 20, 15, and 10 ng per well (lanes 5, 6, 7 and 8, respectively). 
Western blotting was done using rabbit anti-core antibodies [82] (A). ECL photos of blots were scanned, and images were 
quantified with ImageJ software http://rsb.info.nih.gov/ij. The results of quantification of HCV core expression in four independ-
ent experiments (B).
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was observed 35 days after a single gene injection as com-
pared to levels detected at day 21 (data not shown). There
was no difference between BALB/c and C57BL/6 mice
with respect to core-specific IFN- secretion (Fig. 4C versus
Fig. 5C), or core-specific IgG production (p > 0.05 Mann
Whitney U-test; Fig. 4A versus Fig. 5A and Additional file
1).

High core gene expression affects core-specific immune response
The magnitude of anti-core response suggested that the
increase of HCV core gene dose either by one-time large
dose injection, or by repeated injections of smaller doses,
did not significantly enhance core-specific immunity. To
delineate if that could be influenced by core expression
level, BALB/c mice were immunized with a single dose of
low-expressing core genes with no translation initiation
signals (pCMVcore), or with IRES (pCMVcoreIRES). The
results were compared to immunization with core gene
regulated by the Kozak sequence (pCMVcoreIRES) (Fig.
5). The T-cell proliferative response to core- and core-
derived peptides was stronger in mice immunized with
pCMVcoreIRES (Fig. 5). The highest anti-core IgG
response was raised in mice immunized with pCMVcore
that directed the lowest level of HCV core expression (Fig.
3; Fig. 5A). It was significantly higher than the antibody
response induced by pCMVcoreKozak (p < 0.05); the
immune response in pCMVcoreIRES-immunized mice
was intermediate (Fig. 5A). The T-cell proliferative
response to core- and core-derived peptides was stronger
in mice immunized with pCMVcoreIRES (Fig. 5B; p <
0.05). While IL-2 secretion was somewhat higher in mice
immunized with highly expressing pCMVcoreKozak, both
DNA immunogens provided a similar level of core-spe-
cific IFN- secretion (Fig. 5C).

Heterologous DNA prime-protein boost regimen
We aimed to see if core-specific immune response could
be enhanced without increasing core gene doses, but
instead by using the heterologous prime-boost immuni-
zation regimens. HCV core protein aa 1–98 and pCMV-
coreKozak were used to immunize BALB/c mice either
separately, or in the DNA prime-protein boost regimen. A

Figure 4
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Core-specific immune response in C57Bl/6 mice receiving 2 (2 × 25 g), 3 (3 × 25 g), and 4 (4 × 25 g) injections of pCMVcoreKozakFigure 4
Core-specific immune response in C57Bl/6 mice 
receiving 2 (2 × 25 g), 3 (3 × 25 g), and 4 (4 × 25 g) 
injections of pCMVcoreKozak. Maximal titers of IgG spe-
cific to recombinant core and a peptide representing core aa 
1–20 (A); T-cell proliferation measured as the stimulation 
index (SI) in response to HCV core (1–173) and a peptide 
pool covering aa 23–43 of HCV core (B); cytokine secretion 
(pg/ml) in response to recombinant HCV core (C). Data are 
average values for mice assayed at a given time point.
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Core-specific immune response in BALB/c mice immunized with one 100 g dose of pCMVcoreKozak (n = 7), pCMVcoreIRES (n = 6), pCMVcore (n = 6), and empty vector (n = 7)Figure 5
Core-specific immune response in BALB/c mice immunized with one 100 g dose of pCMVcoreKozak (n = 7), 
pCMVcoreIRES (n = 6), pCMVcore (n = 6), and empty vector (n = 7). The highest titers of IgG specific to core 
reached throughout immunization (A); T-cell proliferation measured as the stimulation index (SI) in response to recombinant 
HCV cores aa 1–98 and aa 1–173 and peptide representing HCV core aa 133–142 (B); the levels of core-specific IFN-, IL-2, 
and IL-4 secretion in the cell culture fluids collected after splenocyte stimulation with HCV core aa 1–98 (C). Cytokine secre-
tion in BALB/c mice is represented by the amounts detected in the pooled cell culture fluids from the T-cell proliferation test; 
therefore, no standard deviations are presented.

Mouse groups

0

200
400
600
800

Ig
G

ti
te

r

pCMV
core
(n=6)

pCMV
coreIRES

(n=6)

pCMV
core Kozak

(n=7)

Empty
vector
(n=7)

Mouse groups

1000

A

0

1

2

3

pCMV
coreIRES

(n=4)

pCMV
coreKozak

(n=4)

Empty
Vector
(n=4)

Mouse groups
S

I

Peptide
aa 133-142

Rec. core
aa 1-98

Rec. core
aa 1-173

B

pCMV
coreIRES

(n=4)

pCMV
coreKozak

(n=4)

Empty
Vector
(n=4)

C

P
g

/m
l

IFN- IL-2 IL-4

0

50

150

250



Genetic Vaccines and Therapy 2009, 7:7 http://www.gvt-journal.com/content/7/1/7

Page 11 of 17
(page number not for citation purposes)

Core-specific immune response in BALB/c mice immunized with the recombinant N-terminal domain of HCV core aa 1–98 alone (n = 5); with pCMVcoreKozak (n = 7); and primed with pCMVcoreKozak and boosted with HCV core aa 1–98 (n = 6)Figure 6
Core-specific immune response in BALB/c mice immunized with the recombinant N-terminal domain of HCV 
core aa 1–98 alone (n = 5); with pCMVcoreKozak (n = 7); and primed with pCMVcoreKozak and boosted with 
HCV core aa 1–98 (n = 6). The kinetics of IgG response to core aa 1–98 (A);-T-cell proliferation measured as the stimula-
tion index (SI) in response to HCV core aa 1–98, recombinant core aa 1–173, and a peptide covering HCV core aa 133–142 
(B); levels of core-specific IFN- and IL-2 secretion (pg/ml) in the pooled cell culture after splenocyte stimulation with HCV 
core aa 1–98 or aa 1–173 (C).
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high titer of core-specific antibodies was achieved only
after the heterologous boost (Fig. 6A). The heterologous
regimen effectively induced a proliferative response, both
in SI values (p levels 0.034, Mann Whitney U-test) and in
the number of positive T-cell proliferation tests (p level
0.014; Fig. 6B); and potent core-specific IFN- and IL-2
secretion (Fig. 6C). Core-specific IL-4 secretion was, in all
cases, very low.

Heterologous regimen induced significant anti-core anti-
body production (Fig. 6A). Sera of mice primed with
pCMVcoreKozak and boosted with core aa 1–98 were ana-
lysed for the presence of anti-core antibodies of IgG, IgG1,
IgG2a, IgG2b and IgM subclasses, and the results were
compared to seroreactvivity in mice immunized with sin-
gle injection of core or core expressing plasmids (Fig. 7).
Mice primed with pCMVcoreKozak and boosted with core
protein had significantly higher levels of anti-core IgG
than mice immunized with pCMVcoreKozak (p = 0.0006,
Mann-Whitney U-test) or pCMVcore (p = 0.002) (immu-
nization with pCMVcore gave higher level of IgG than
immunization with pCMVcoreKozak, p < 0.05). Group
with heterologous prime/boost regimen had also an

increased levels of anti-core IgG1, although the difference
with the control group did not reach the level of signifi-
cance (p < 0.1). Antibodies of IgG2a or IgG2b subclasses
were not found. Low specific anti-core IgM were observed
only in mice immunized with recombinant core aa 1–98
(p < 0.1; Fig. 7). It was higher than in mice primed with
core DNA and boosted with core protein (p level 0.05). At
the same time, core-immunized mice had no anti-core
IgG1 or IgG2 (Fig. 7). Thus, the heterologous core DNA
prime/core protein boost regimen preferentially induced
anti-core IgG, while protein immunization triggered
mostly low-level anti-core IgM.

Discussion
The immune response in DNA immunization depends on
the amount of antigen produced from the immunogen in
vivo as predetermined by the gene dose and by the gene
capacity to direct an efficient antigen expression [78,79].
Normally, the response increases with the increase of the
dose and efficacy of gene expression (for examples, see
[80-83]). However, the DNA immunogen used here
encodes not just a structural component of the virus, but
also a pathogenic factor. HCV core protein interacts with

Spectrum of core-specific immune responseFigure 7
Spectrum of core-specific immune response. The kinetics of IgG, IgM, IgG1, IgG2a and IgG2b response to core aa 1–98 
after immunization with different immunogens.
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a broad range of cellular proteins and influences numer-
ous host cell functions [31,32,39,71,84,85]. Of impor-
tance for HCV vaccine design was to find to what extent
the immune response to HCV core in DNA immunization
is influenced (positively, or negatively) by the level of core
expression as determined by gene dose (i), and gene
expression efficacy (ii).

The first issue was addressed in a series of immunizations
in which the same dose of HCV core was given as a single
or split into multiple injections. We and others have ear-
lier observed that repeated HCV core gene boosts do not
lead to an enhancement of core-specific immune response
[42,46,68]. On the contrary, both core-specific IFN- and
IL-2 production [68] and anti-core antibody response
[2,46,64] appear to be down-regulated. Here as well, the
overall comparison between immunizations carried out
by single and multiple core gene injections in different
mouse strains demonstrated that the outcomes of immu-
nization with one 100 g versus two to four 25 g core
gene doses were quite similar (Fig. 4; see also the sum-
mary in Additional file 2). Furthermore, antibody
response was not boosted; T-cell proliferative response
and core-specific IFN- secretion could not be boosted
beyond the levels reached after the initial two injections,
and core-specific IL-2 secretion even appeared to be sup-
pressed. Thus, core-specific immune response can be
achieved after single DNA immunization, while repeated
core gene administration may actually suppress core-spe-
cific immunity.

The issue of translation efficacy was assessed in single-
dose immunizations with plasmids directing different lev-
els of HCV core expression. There are different ways to
increase the level of gene expression efficacy such as the
use of strong promoters, optimal species-specific codons,
and manipulations with RNA folding [78,78,79]. An
important factor is the efficacy of translation initiation. In
the CAP-dependent translation of mammalian genes it is
determined by sequences flanking the AUG initiator
codon. High levels of translation are achieved with the
Kozak sequence, a guanine at position +4 and an adenine
at -3 from AUG [86,87]. The alternative mechanisms of
initiation site selection on eukaryotic cellular and viral
mRNAs, also of HCV, include the translation initiation
from IRESs (internal ribosome entry sites/segments) [88].
Located in the 5'-UTR region of viral genome, HCV IRES
is optimized to hijack the ribosomes and translation fac-
tors from the host for the translation of HCV polyprotein
[89]. Core is tightly involved in the IRES-mediated regula-
tion of HCV translation with several regulatory signals
localized in both core protein and core coding sequence
[24,90,91]. Thus, the 5'-end of HCV genome incorporat-
ing 5'-UTR and core coding sequence were harmonized

during evolution to provide for the levels of core expres-
sion essential for the virus.

Both CAP and IRES translation initiation options were
employed in the design of core DNA immunogens.
Eukaryotic expression vectors were constructed encoding
core of HCV 1b without translation initiation signal
(pCMVcore), core preceded by the 5'-UTR of HCV 1b iso-
late AD (pCMVcoreIRES), and core preceded by the con-
sensus Kozak sequence (pCMVcoreKozak). The latter
directed the expression of 35-fold more core than the gene
devoid of the translation initiation signals, and 16-fold
more core than the gene regulated by IRES. However,
despite a considerable difference in the core expression
capacity, Kozak- and IRES-regulated DNA immunogens
induced similar levels of core-specific IFN- secretion (Fig.
5C). More so, while IL-2 secretion was somewhat higher
in mice immunized with highly expressing pCMVcoreKo-
zak, a T-cell proliferative response to core- and core-
derived peptides was stronger in mice immunized with
pCMVcoreIRES (Fig. 5B). Thus, high core expression lev-
els did not promote a better core specific cellular
response.

DNA-based immunization can induce potent antibody
response including virus neutralizing antibodies [92-96].
However, no significant antibody response has ever been
induced in core gene immunization unless it was fol-
lowed by the protein boost [2,64]. Anti-core antibody tit-
ers obtained here after immunization with both CAP- and
IRES-regulated core genes were also low. Interestingly,
however, significantly higher titers of anti-core antibodies
were obtained in mice that received the least expressed
core gene devoid of any translation regulation signals
(pCMV core; Figs. 5A, 7). Thus, the use of highly express-
ing HCV core DNA did not promote an effective core-spe-
cific antibody response.

Altogether, this points to possible adverse effects of the
high-level as well as of the prolonged HCV core gene
expression. We have additional data in support of this
concept from immunization of C57BL/6 mice with a syn-
thetic truncated HCV core gene devoid of HCV core nucle-
otide-sequence dependent regulatory signals. The latter
expressed HCV 1b core at five to six-fold lower levels than
the viral full-length core gene [97], but nevertheless, was
capable of inducing potent core-specific cellular and anti-
body response http://www.meetingsmanagement.com/
dna_2004/index.htm[98].

DNA immunization with antigens co-expressed in natural
virus infection can result in inhibition of both protein
expression and specific immune response [99]. More so,
pathological effects were reported of the repeated immu-
nization with certain microbial genes, for example the
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hsp60 gene of Mycobacterium that causes necrotizing bron-
chointerstitial pneumonia and bronchiolitis in healthy
mouse recipients, and multifocal regions of cellular necro-
sis in lungs when applied therapeutically [100,101]. HCV
core is the factor of HCV pathogenicity. It activates cellular
and viral promoters [102], induces ER- and mitochondrial
stress [103,104], regulates apoptosis [105,106], tumori-
genesis [107,108], and induces abnormal lipid metabo-
lism [109]. In experimental systems, core expression leads
to the development of diverse pathological effects includ-
ing CD4+ T-cell depletion, liver steatosis, insulin resist-
ance, and hepatocellular carcinoma [33,110]. One of the
notable although controversial features is the capacity of
HCV core to suppresses host immunity [32,39,84,85].
These features of HCV core may explain why here a better
immune response was achieved after single immuniza-
tion with vectors providing for comparatively low HCV
core expression.

Altogether, this points to the necessity to devise alterna-
tive immunization regimens that would help to circum-
vent possible adverse effects of HCV core.

Many approaches can be pursued, with DNA vaccination
combined with heterologous protein or recombinant viral
boosts considered as the most promising [11]. The princi-
ple of this strategy is to prime T-cells to be antigen-specific
and then, upon repeated exposure to a specific antigen,
induce a rapid T-cell expansion. In heterologous boosts,
the encoded antigen is delivered in a different form/differ-
ent vehicle [111]. DNA plasmids are perfectly fit for prim-
ing since they are internalized by antigen presenting cells
and can induce antigen presentation via MHC class I or
class II. Such heterologous regimens can be effective when
infection occurs with both viral particles and virus-
infected cells, and neither cellular, nor antibody response
is sufficient for sterilizing protection or viral clearance, if
acting alone. This approach may help to circumvent the
negative effects of intracellular core expression. Indeed,
here, the heterologous DNA-prime/protein boost strategy
was shown to be advantageous to both immunizations
with core DNA and with the recombinant core protein
(Figs. 6, 7). Protein alone performed even worse than sin-
gle DNA injections (Figs. 6, 7). Only the heterologous
DNA-prime-protein boost regimen induced a significant
core-specific antibody production and potent T-cell
response of mainly Th1-profile. This may be beneficial
since most correlates of spontaneous HCV clearance are
Th1-oriented [32,39,84,85].

Conclusion
This data suggests that the administration of highly
expressed HCV core gene, as well as repeated core gene
injections may hamper core-specific immune response.
The boosting effect of repeated core gene injections is

transient as it disappears with subsequent injections. One
possible way to enhance core-specific response is to
deliver limited intracellular amounts of core, either by giv-
ing lower plasmid doses, or by giving vectors with low
expression efficacy. An additional option is the use of het-
erologous DNA prime/protein boost regimen that leads to
potent immune response of a mixed Th1/Th2-type. We
are currently testing if transient HCV core gene expression
and acquisition of anti-HCV core immunity affect the
immune status and functionality of the immune system in
gene recipients.
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Additional material

Additional file 1
Establishment of calibration curves for quantification of core expres-
sion in vitro. Recombinant core aa 1–173 in serial dilutions in the range 
of 10 to 25 ng (A), 10 to 100 ng (B), or 12.5 to 100 ng (C) was loaded 
on 15% SDS-PAAG and resolved by gel electrophoresis together with the 
study samples. Proteins were transferred to PVDF membrane and sub-
jected to Western blotting with core-specific rabbit antibodies, and second-
ary anti-rabbit HRP-conjugated antibodies (DAKOPatts). Signals were 
registered using X-ray films and ECL detection system, images were saved, 
scanned, and signal of individual band corresponding to core was quanti-
fied by Image J http://rsb.info.nih.gov, and calibration curves were built 
(D).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1479-
0556-7-7-S1.ppt]

Additional file 2
Summary on core-specific immune responses in BALB/c and C57BL/6 
mice. Summarized data of immunization experiments performed in 
BALB/c and C57BL6 mice. The empty vector immunized group and the 
control group are composed of a mixture of BALB/c (n = 7) and C57BL6 
(n = 12) mice. All the other groups had been described in Figures 4 to 6.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1479-
0556-7-7-S2.ppt]
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